Roland Schmucki
Hoffmann-La Roche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roland Schmucki.
International Journal of Cancer | 2015
Jordan Madic; Anna Kiialainen; François-Clément Bidard; Fabian Birzele; Guillemette Ramey; Quentin Leroy; Thomas Rio Frio; Isabelle Vaucher; Virginie Raynal; Virginie Bernard; Alban Lermine; Inga Clausen; Nicolas Giroud; Roland Schmucki; Maud Milder; Carsten Horn; Olivia Spleiss; Olivier Lantz; Marc-Henri Stern; Jean-Yves Pierga; Martin Weisser; Ronald Lebofsky
Circulating tumor DNA (ctDNA) is a new circulating tumor biomarker which might be used as a prognostic biomarker in a way similar to circulating tumor cells (CTCs). Here, we used the high prevalence of TP53 mutations in triple negative breast cancer (TNBC) to compare ctDNA and CTC detection rates and prognostic value in metastatic TNBC patients. Forty patients were enrolled before starting a new line of treatment. TP53 mutations were characterized in archived tumor tissues and in plasma DNA using two next generation sequencing (NGS) platforms in parallel. Archived tumor tissue was sequenced successfully for 31/40 patients. TP53 mutations were found in 26/31 (84%) of tumor samples. The same mutation was detected in the matched plasma of 21/26 (81%) patients with an additional mutation found only in the plasma for one patient. Mutated allele fractions ranged from 2 to 70% (median 5%). The observed correlation between the two NGS approaches (R2 = 0.903) suggested that ctDNA levels data were quantitative. Among the 27 patients with TP53 mutations, CTC count was ≥1 in 19 patients (70%) and ≥5 in 14 patients (52%). ctDNA levels had no prognostic impact on time to progression (TTP) or overall survival (OS), whereas CTC numbers were correlated with OS (p = 0.04) and marginally with TTP (p = 0.06). Performance status and elevated LDH also had significant prognostic impact. Here, absence of prognostic impact of baseline ctDNA level suggests that mechanisms of ctDNA release in metastatic TNBC may involve, beyond tumor burden, biological features that do not dramatically affect patient outcome.
Journal of Molecular Biology | 2009
Estevão A. Peroza; Roland Schmucki; Peter Güntert; Eva Freisinger; Oliver Zerbe
Metallothioneins (MTs) are ubiquitous cysteine-rich proteins with a high affinity for divalent metal ions such as Zn(II), Cu(I), and Cd(II) that are involved in metal ion homeostasis and detoxification, as well as protection against reactive oxygen species. Here we show the NMR solution structure of the beta(E)-domain of the early cysteine-labeled protein (E(c)-1) from wheat (beta(E)-E(c)-1), which represents the first three-dimensional structure of a plant MT. The beta(E)-domain comprises the 51 C-terminal residues of E(c)-1 and exhibits a distinctive unprecedented structure with two separate metal-binding centers, a mononuclear Zn(II) binding site constituted by two cysteine and two highly conserved histidine residues as found in certain zinc-finger motifs, and a cluster formed by three Zn(II) ions coordinated by nine Cys residues that resembles the cluster in the beta-domain of vertebrate MTs. Cys-metal ion connectivities were determined by exhaustive structure calculations for all 7560 possible configurations of the three-metal cluster. Backbone dynamics investigated by (15)N relaxation experiments support the results of the structure determination in that beta(E)-E(c)-1 is a rigidly folded polypeptide. To further investigate the influence of metal ion binding on the stability of the structure, we replaced Zn(II) with Cd(II) ions and examined the effects of metal ion release on incubation with a metal ion chelator.
Journal of the American Chemical Society | 2010
Toshiyuki Hamada; Shigeki Matsunaga; Masako Fujiwara; Ken-ichi Fujita; Hiroshi Hirota; Roland Schmucki; Peter Güntert; Nobuhiro Fusetani
Polytheonamide B (pTB), a highly cytotoxic polypeptide, is one of the most unusual nonribosomal peptides of sponge origin. pTB is a linear 48-residue peptide with alternating D- and L-amino acids and contains a total of eight types of nonproteinogenic amino acids. To investigate the mechanisms underlying its cytotoxic activity, we determined the three-dimensional structure of pTB by NMR spectroscopy, structure calculation, and energy minimization. pTB adopts a single right-handed β(6.3)-helical structure in a 1:1 mixture of methanol/chloroform with a length of approximately 45 A and a hydrophilic pore of ca. 4 A inner diameter. These features indicate that pTB molecules form transmembrane channels that permeate monovalent cations as gramicidin A channels do. The strong cytotoxicity of pTB can be ascribed to its ability to form single molecule channels through biological membranes.
Journal of Biomolecular NMR | 2009
Roland Schmucki; Shigeyuki Yokoyama; Peter Güntert
A new algorithm, DYNASSIGN, for the automated assignment of NMR chemical shift resonances was developed in which expected cross peaks in multidimensional NMR spectra are represented by peak-particles and assignment restraints are translated into a potential energy function. Molecular dynamics simulation techniques are used to calculate a trajectory of the system of peak-particles subjected to the potential function in order to find energetically optimal configurations that correspond to correct assignments. Peak-particle dynamics-based simulated annealing was combined with the Hungarian algorithm for local optimization, and a residue-based score was introduced to distinguish between reliable assignments and “unassigned” resonances for which no reliable assignment can be established. The DYNASSIGN algorithm was implemented in the program CYANA and tested with data sets obtained from the experimental NMR data of nine small proteins. With a set of 10 commonly used NMR spectra, on average 82.5% of all backbone and side-chain 1H, 13C and 15N resonances could be assigned with an average error rate of 3.5%.
PLOS Pathogens | 2015
Simon P. Fletcher; Daniel J. Chin; Lore Gruenbaum; Hans Bitter; Erik Roy Rasmussen; Palanikumar Ravindran; David C. Swinney; Fabian Birzele; Roland Schmucki; Stefan Lorenz; Erhard Kopetzki; Jade Carter; Miriam Triyatni; Linta M. Thampi; Junming Yang; Dalal AlDeghaither; Marta G. Murredu; Paul J. Cote; Stephan Menne
Recombinant interferon-alpha (IFN-α) is an approved therapy for chronic hepatitis B (CHB), but the molecular basis of treatment response remains to be determined. The woodchuck model of chronic hepatitis B virus (HBV) infection displays many characteristics of human disease and has been extensively used to evaluate antiviral therapeutics. In this study, woodchucks with chronic woodchuck hepatitis virus (WHV) infection were treated with recombinant woodchuck IFN-α (wIFN-α) or placebo (n = 12/group) for 15 weeks. Treatment with wIFN-α strongly reduced viral markers in the serum and liver in a subset of animals, with viral rebound typically being observed following cessation of treatment. To define the intrahepatic cellular and molecular characteristics of the antiviral response to wIFN-α, we characterized the transcriptional profiles of liver biopsies taken from animals (n = 8–12/group) at various times during the study. Unexpectedly, this revealed that the antiviral response to treatment did not correlate with intrahepatic induction of the majority of IFN-stimulated genes (ISGs) by wIFN-α. Instead, treatment response was associated with the induction of an NK/T cell signature in the liver, as well as an intrahepatic IFN-γ transcriptional response and elevation of liver injury biomarkers. Collectively, these data suggest that NK/T cell cytolytic and non-cytolytic mechanisms mediate the antiviral response to wIFN-α treatment. In summary, by studying recombinant IFN-α in a fully immunocompetent animal model of CHB, we determined that the immunomodulatory effects, but not the direct antiviral activity, of this pleiotropic cytokine are most closely correlated with treatment response. This has important implications for the rational design of new therapeutics for the treatment of CHB.
Scientific Reports | 2015
Eduard Urich; Roland Schmucki; Nadine Ruderisch; Eric Argirios Kitas; Ulrich Certa; Helmut Jacobsen; Christophe Schweitzer; Alessandra Bergadano; Martin Ebeling; Hansruedi Loetscher; Per-Ola Freskgård
The blood-brain barrier and the blood-cerebrospinal fluid barrier prevent access of biotherapeutics to their targets in the central nervous system and therefore prohibit the effective treatment of neurological disorders. In an attempt to discover novel brain transport vectors in vivo, we injected a T7 phage peptide library and continuously collected blood and cerebrospinal fluid (CSF) using a cisterna magna cannulated conscious rat model. Specific phage clones were highly enriched in the CSF after four rounds of selection. Validation of individual peptide candidates showed CSF enrichments of greater than 1000-fold. The biological activity of peptide-mediated delivery to the brain was confirmed using a BACE1 peptide inhibitor linked to an identified novel transport peptide which led to a 40% reduction of Amyloid-β in CSF. These results indicate that the peptides identified by the in vivo phage selection approach could be useful transporters for systemically administrated large molecules into the brain with therapeutic benefits.
Nature Communications | 2017
M. Sivaramakrishnan; K. D. McCarthy; Sébastien Campagne; Sylwia Huber; S. Meier; A. Augustin; T. Heckel; H. Meistermann; M. N. Hug; P. Birrer; A. Moursy; S. Khawaja; Roland Schmucki; Nikolaos Berntenis; N. Giroud; S. Golling; M. Tzouros; B. Banfai; G. Duran-Pacheco; J. Lamerz; Y. Hsiu Liu; T. Luebbers; Hasane Ratni; Martin Ebeling; Antoine Cléry; S. Paushkin; Adrian R. Krainer; Frédéric H.-T. Allain; Friedrich Metzger
Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures.Small molecules correcting the splicing deficit of the survival of motor neuron 2 (SMN2) gene have been identified as having therapeutic potential. Here, the authors provide evidence that SMN2 mRNA forms a ribonucleoprotein complex that can be specifically targeted by these small molecules.
BMC Genomics | 2015
Tobias Heckel; Roland Schmucki; Marco Berrera; Stephan Ringshandl; Laura Badi; Guido Steiner; Morgane Ravon; Erich Küng; Bernd Kuhn; Nicole A. Kratochwil; Georg Schmitt; Anna Kiialainen; Corinne Nowaczyk; Hamina Daff; Azinwi Phina Khan; Isaac Lekolool; Roger Pelle; Edward Okoth; Richard P. Bishop; Claudia Daubenberger; Martin Ebeling; Ulrich Certa
BackgroundIn the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development.ResultsHere we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we could demonstrate similar expression levels for most phase I drug-metabolizing enzymes. Higher expression levels and metabolic activities were found for FMO1, AKR/CRs and for phase II drug metabolizing enzymes in minipig as compared to human. The variability of gene expression in equivalent human and minipig tissues is considerably higher in minipig organs, which is important for study design in case a human target belongs to this variable category in the minipig. The first analysis of gene expression in multiple tissues during development from young to adult shows that the majority of transcriptional programs are concluded four weeks after birth. This finding is in line with the advanced state of human postnatal organ development at comparative age categories and further supports the minipig as model for pediatric drug safety studies.ConclusionsGenome based assessment of sequence conservation combined with gene expression data in several tissues improves the translational value of the minipig for human drug development. The genome and gene expression data presented here are important resources for researchers using the minipig as model for biomedical research or commercial breeding. Potential impact of our data for comparative genomics, translational research, and experimental medicine are discussed.
BMC Genomics | 2013
Roland Schmucki; Marco Berrera; Erich Küng; Serene Lee; Wolfgang E. Thasler; Sabine Grüner; Martin Ebeling; Ulrich Certa
BackgroundWhole transcriptome analyses are an essential tool for understanding disease mechanisms. Approaches based on next-generation sequencing provide fast and affordable data but rely on the availability of annotated genomes. However, there are many areas in biomedical research that require non-standard animal models for which genome information is not available. This includes the Syrian hamster Mesocricetus auratus as an important model for dyslipidaemia because it mirrors many aspects of human disease and pharmacological responses. We show that complementary use of two independent next generation sequencing technologies combined with mapping to multiple genome databases allows unambiguous transcript annotation and quantitative transcript imaging. We refer to this approach as “triple match sequencing” (TMS).ResultsContigs assembled from a normalized Roche 454 hamster liver library comprising 1.2 million long reads were used to identify 10’800 unique transcripts based on homology to RefSeq database entries from human, mouse, and rat. For mRNA quantification we mapped 82 million SAGE tags (SOLiD) from the same RNA source to the annotated hamster liver transcriptome contigs. We compared the liver transcriptome of hamster with equivalent data from human, rat, minipig, and cynomolgus monkeys to highlight differential gene expression with focus on lipid metabolism. We identify a cluster of five genes functionally related to HDL metabolism that is expressed in human, cynomolgus, minipig, and hamster but lacking in rat as a non-responder species for lipid lowering drugs.ConclusionsThe TMS approach is suited for fast and inexpensive transcript profiling in cells or tissues of species where a fully annotated genome is not available. The continuously growing number of well annotated reference genomes will further empower reliable transcript identification and thereby raise the utility of the method for any species of interest.
Journal of Hepatology | 2017
Henrik Mueller; Steffen Wildum; S. Luangsay; Johanna Walther; Anaïs Lopez; Philipp Tropberger; Giorgio Ottaviani; Wenzhe Lu; Neil Parrott; Jitao David Zhang; Roland Schmucki; Tomas Racek; Jean-Christophe Hoflack; Erich Kueng; Floriane Point; Xue Zhou; Guido Steiner; M. Lütgehetmann; Gianna Rapp; T. Volz; M. Dandri; Song Yang; John A. T. Young; Hassan Javanbakht
BACKGROUND & AIMS The hallmarks of chronic HBV infection are a high viral load (HBV DNA) and even higher levels (>100-fold in excess of virions) of non-infectious membranous particles containing the tolerogenic viral S antigen (HBsAg). Currently, standard treatment effectively reduces viremia but only rarely results in a functional cure (defined as sustained HBsAg loss). There is an urgent need to identify novel therapies that reduce HBsAg levels and restore virus-specific immune responsiveness in patients. We report the discovery of a novel, potent and orally bioavailable small molecule inhibitor of HBV gene expression (RG7834). METHODS RG7834 antiviral characteristics and selectivity against HBV were evaluated in HBV natural infection assays and in a urokinase-type plasminogen activator/severe combined immunodeficiency humanized mouse model of HBV infection, either alone or in combination with entecavir. RESULTS Unlike nucleos(t)ide therapies, which reduce viremia but do not lead to an effective reduction in HBV antigen expression, RG7834 significantly reduced the levels of viral proteins (including HBsAg), as well as lowering viremia. Consistent with its proposed mechanism of action, time course RNA-seq analysis revealed a fast and selective reduction in HBV mRNAs in response to RG7834 treatment. Furthermore, oral treatment of HBV-infected humanized mice with RG7834 led to a mean HBsAg reduction of 1.09 log10 compared to entecavir, which had no significant effect on HBsAg levels. Combination of RG7834, entecavir and pegylated interferon α-2a led to significant reductions of both HBV DNA and HBsAg levels in humanized mice. CONCLUSION We have identified a novel oral HBV viral gene expression inhibitor that blocks viral antigen and virion production, that is highly selective for HBV, and has a unique antiviral profile that is clearly differentiated from nucleos(t)ide analogues. LAY SUMMARY We discovered a novel small molecule viral expression inhibitor that is highly selective for HBV and unlike current therapy inhibits the expression of viral proteins by specifically reducing HBV mRNAs. RG7834 can therefore potentially provide anti-HBV benefits and increase HBV cure rates, by direct reduction of viral agents needed to complete the viral life cycle, as well as a reduction of viral agents involved in evasion of the host immune responses.