Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland Tuerk is active.

Publication


Featured researches published by Roland Tuerk.


Journal of Biological Chemistry | 2006

Dissecting the Role of 5′-AMP for Allosteric Stimulation, Activation, and Deactivation of AMP-activated Protein Kinase

Marianne Suter; Uwe Riek; Roland Tuerk; Uwe Schlattner; Theo Wallimann; Dietbert Neumann

AMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase that is crucial for cellular energy homeostasis of eukaryotic cells and organisms. Here we report on the activation of AMPK α1β1γ1 and α2β2γ1 by their upstream kinases (Ca2+/calmodulin-dependent protein kinase kinase-β and LKB1-MO25α-STRADα), the deactivation by protein phosphatase 2Cα, and on the extent of stimulation of AMPK by its allosteric activator AMP, using purified recombinant enzyme preparations. An accurate high pressure liquid chromatography-based method for AMPK activity measurements was established, which allowed for direct quantitation of the unphosphorylated and phosphorylated artificial peptide substrate, as well as the adenine nucleotides. Our results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP. The two AMPK isoforms exhibit similar specific activities (6 μmol/min/mg) and do not differ significantly by their responsiveness to AMP. Due to the inherent instability of ATP and ADP, it proved impossible to assay AMPK activity in the absolute absence of AMP. However, the half-maximal stimulatory effect of AMP is reached below 2 μm. AMP does not appear to augment phosphorylation by upstream kinases in the purified in vitro system, but deactivation by dephosphorylation of AMPK α-subunits at Thr-172 by protein phosphatase 2Cα is attenuated by AMP. Furthermore, it is shown that neither purified NAD+ nor NADH alters the activity of AMPK in a concentration range of 0–300 μm, respectively. Finally, evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AMPK in vitro, but compared with AMP, maximal activity is not reached. These data shed new light on physiologically important aspects of AMPK regulation.


The EMBO Journal | 2010

PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis

Nabil Djouder; Roland Tuerk; Marianne Suter; Paolo Salvioni; Ramon F. Thali; Roland W. Scholz; Kari Vaahtomeri; Yolanda Auchli; Helene Rechsteiner; René Brunisholz; Benoit Viollet; Tomi P. Mäkelä; Theo Wallimann; Dietbert Neumann; Wilhelm Krek

The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by β‐adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone‐sensitive lipase (HSL). TAG resynthesis is associated with high‐energy consumption, which when inordinate, leads to increased AMPK activity that acts to restrain hydrolysis of TAGs by inhibiting PKA‐mediated activation of HSL. Here, we report that in primary mouse adipocytes, PKA associates with and phosphorylates AMPKα1 at Ser‐173 to impede threonine (Thr‐172) phosphorylation and thus activation of AMPKα1 by LKB1 in response to lipolytic signals. Activation of AMPKα1 by LKB1 is also blocked by PKA‐mediated phosphorylation of AMPKα1 in vitro. Functional analysis of an AMPKα1 species carrying a non‐phosphorylatable mutation at Ser‐173 revealed a critical function of this phosphorylation for efficient release of free fatty acids and glycerol in response to PKA‐activating signals. These results suggest a new mechanism of negative regulation of AMPK activity by PKA that is important for converting a lipolytic signal into an effective lipolytic response.


Circulation Research | 2005

Dual Mechanisms Regulating AMPK Kinase Action in the Ischemic Heart

Suzanne J. Baron; Ji Li; Raymond R. Russell; Dietbert Neumann; Edward J. Miller; Roland Tuerk; Theo Wallimann; Rebecca L. Hurley; Lee A. Witters; Lawrence H. Young

AMP-activated protein kinase (AMPK) is emerging as an important signaling protein during myocardial ischemia. AMPK is a heterotrimeric complex containing an &agr; catalytic subunit and &bgr; and &ggr; regulatory subunits. Phosphorylation of Thr172 in the activation loop of the &agr; subunit by upstream AMPK kinase(s) (AMPKK) is a critical determinant of AMPK activity. However, the mechanisms regulating AMPK phosphorylation in the ischemic heart remain uncertain and were therefore investigated. In the isolated working rat heart, low-flow ischemia rapidly activated AMPKK activity when measured using recombinant AMPK (rAMPK) as substrate. The addition of AMP (10 to 200 &mgr;mol/L) augmented the ability of heterotrimeric &agr;1&bgr;1&ggr;1 or &agr;2&bgr;1&ggr;1 rAMPK to be phosphorylated by heart AMPKK in vitro, whereas physiologic concentrations of ATP inhibited rAMPK phosphorylation. However, neither AMP nor ATP directly influenced AMPKK activity: they had no effect on AMPKK-mediated phosphorylation of rAMPK substrates lacking normal AMP-binding &ggr; subunits (isolated truncated &agr;11-312 or &agr;1&bgr;1&ggr;1 rAMPK containing an R70Q mutation in the &ggr;1 AMP-binding site). Regional ischemia in vivo also increased AMPKK activity and AMPK phosphorylation in the rat heart. AMPK phosphorylation could also be induced in vivo without activating AMPKK: AICAR infusion increased AMPK phosphorylation without activating AMPKK; however, the AMP-mimetic AICAR metabolite ZMP enhanced the ability of heterotrimeric rAMPK to be phosphorylated by AMPKK. Thus, heart AMPKK activity is increased by ischemia and its ability to phosphorylate AMPK is highly modulated by the interaction of AMP and ATP with the heterotrimeric AMPK complex, indicating that dual mechanisms regulate AMPKK action in the ischemic heart.


Journal of Biological Chemistry | 2015

The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation

Yvonne Oligschlaeger; Marie Miglianico; Dipanjan Chanda; Roland W. Scholz; Ramon F. Thali; Roland Tuerk; David Stapleton; Paul R. Gooley; Dietbert Neumann

Background: AMP-activated protein kinase (AMPK) is a current drug target. AMPK can attach to glycogen granules. Results: Autophosphorylation of AMPK prevents its association with glycogen. Conclusion: Subcellular localization of AMPK is affected by the kinase autophosphorylation status. Significance: Understanding the regulation of AMPK at subcellular level is crucial for the currently pursued drug targeting approach. The mammalian AMP-activated protein kinase (AMPK) is an obligatory αβγ heterotrimeric complex carrying a carbohydrate-binding module (CBM) in the β-subunit (AMPKβ) capable of attaching AMPK to glycogen. Nonetheless, AMPK localizes at many different cellular compartments, implying the existence of mechanisms that prevent AMPK from glycogen binding. Cell-free carbohydrate binding assays revealed that AMPK autophosphorylation abolished its carbohydrate-binding capacity. X-ray structural data of the CBM displays the central positioning of threonine 148 within the binding pocket. Substitution of Thr-148 for a phospho-mimicking aspartate (T148D) prevents AMPK from binding to carbohydrate. Overexpression of isolated CBM or β1-containing AMPK in cellular models revealed that wild type (WT) localizes to glycogen particles, whereas T148D shows a diffuse pattern. Pharmacological AMPK activation and glycogen degradation by glucose deprivation but not forskolin enhanced cellular Thr-148 phosphorylation. Cellular glycogen content was higher if pharmacological AMPK activation was combined with overexpression of T148D mutant relative to WT AMPK. In summary, these data show that glycogen-binding capacity of AMPKβ is regulated by Thr-148 autophosphorylation with likely implications in the regulation of glycogen turnover. The findings further raise the possibility of regulated carbohydrate-binding function in a wider variety of CBM-containing proteins.


Journal of Biological Chemistry | 2009

Homo-oligomerization and Activation of AMP-activated Protein Kinase Are Mediated by the Kinase Domain αG-Helix

Roland W. Scholz; Marianne Suter; Théodore Weimann; Cécile Polge; Petr V. Konarev; Ramon F. Thali; Roland Tuerk; Benoit Viollet; Theo Wallimann; Uwe Schlattner; Dietbert Neumann

AMP-activated protein kinase (AMPK) is a heterotrimeric complex playing a crucial role in maintaining cellular energy homeostasis. Recently, homodimerization of mammalian AMPK and yeast ortholog SNF1 was shown by us and others. In SNF1, it involved specific hydrophobic residues in the kinase domain αG-helix. Mutation of the corresponding AMPK α-subunit residues (Val-219 and Phe-223) to glutamate reduced the tendency of the kinase to form higher order homo-oligomers, as was determined by the following three independent techniques in vitro: (i) small angle x-ray scattering, (ii) surface plasmon resonance spectroscopy, and (iii) two-dimensional blue native/SDS-PAGE. Recombinant protein as well as AMPK in cell lysates of primary cells revealed distinct complexes of various sizes. In particular, the assembly of very high molecular mass complexes was dependent on both the αG-helix-mediated hydrophobic interactions and kinase activation. In vitro and when overexpressed in double knock-out (α1−/−, α2−/−) mouse embryonic fibroblast cells, activation of mutant AMPK was impaired, indicating a critical role of the αG-helix residues for AMPK activation via its upstream kinases. Also inactivation by protein phosphatase 2Cα was affected in mutant AMPK. Importantly, activation of mutant AMPK by LKB1 was restored by exchanging the corresponding and conserved hydrophobic αG-helix residues of LKB1 (Ile-260 and Phe-264) to positively charged amino acids. These mutations functionally rescued LKB1-dependent activation of mutant AMPK in vitro and in cell culture. Our data suggest a physiological role for the hydrophobic αG-helix residues in homo-oligomerization of heterotrimers and cellular interactions, in particular with upstream kinases, indicating an additional level of AMPK regulation.


Analytical Biochemistry | 2009

Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry

Roland Tuerk; Yolanda Auchli; Ramon F. Thali; Roland W. Scholz; Theo Wallimann; René Brunisholz; Dietbert Neumann

Phosphoamino acid modifications on substrate proteins are critical components of protein kinase signaling pathways. Thus, diverse methodologies have been developed and applied to identify the sites of phosphorylated amino acids within proteins. Despite significant progress in the field, even the determination of phosphorylated residues in a given highly purified protein is not a matter of routine and can be difficult and time-consuming. Here we present a practicable approach that integrates into a liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry (LC-MALDI MS) workflow and allows localization and quantification of phosphorylated peptides on the MALDI target plate prior to MS analysis. Tryptic digests of radiolabeled proteins are fractionated by reversed-phase LC directly onto disposable MALDI target plates, followed by autoradiographic imaging. Visualization of the radiolabel enables focused analysis of selected spots, thereby accelerating the process of phosphorylation site mapping by decreasing the number of spectra to be acquired. Moreover, absolute quantification of the phosphorylated peptides is permitted by the use of appropriate standards. Finally, the manual sample handling is minimal, and consequently the risk of adsorptive sample loss is very low. Application of the procedure allowed the targeted identification of six novel autophosphorylation sites of AMP-activated protein kinase (AMPK) and displayed additional unknown phosphorylated peptide species not amenable to detection by MS. Furthermore, autoradiography revealed topologically inhomogeneous distribution of phosphorylated peptides within individual spots. However, accurate analysis of defined areas within single spots suggests that, rather than such quantitative differences, mainly the manner of matrix crystallization significantly affects ionization of phosphopeptides.


Biochimica et Biophysica Acta | 2014

Regulation of brain-type creatine kinase by AMP-activated protein kinase: Interaction, phosphorylation and ER localization

Sacnicte Ramírez Ríos; Frédéric Lamarche; Cécile Cottet-Rousselle; Anna Klaus; Roland Tuerk; Ramon F. Thali; Yolanda Auchli; René Brunisholz; Dietbert Neumann; Luc Barret; Malgorzata Tokarska-Schlattner; Uwe Schlattner

AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca²⁺-pumping.


Biochemical and Biophysical Research Communications | 2010

Novel candidate substrates of AMP-activated protein kinase identified in red blood cell lysates.

Ramon F. Thali; Roland Tuerk; Roland W. Scholz; Yolanda Yoho-Auchli; René Brunisholz; Dietbert Neumann

AMPK is a metabolic stress-sensing kinase with important functions for red blood cell (RBC) survival. By using a proteomic approach, we identified putative AMPK targets in hemoglobin-depleted lysates of RBC, including metabolic enzymes, cytoskeletal proteins and enzymes involved in the oxidative stress response. These data tie in with the phenotypic observations of AMPKalpha1-deficient RBC and provide reference for future studies.


BioTechniques | 2008

An automated home-built low-cost fermenter suitable for large-scale bacterial expression of proteins in Escherichia coli

Uwe Riek; Roland Tuerk; Theo Wallimann; Uwe Schlattner; Dietbert Neumann

We have developed an automated fermentation system for cost-efficient upscaling of protein expression in bacteria. The system, built for use by nonbiotechnologists, can be assembled mostly from standard laboratory equipment and allows a largely unattended growth of bacteria to OD 25 (at 600 nm) in a 12 L vessel. The typical yield of 250-350 g of wet weight cell pellet per run, which is equivalent to the biomass obtained from 250 shake flask cultures containing 400 mL Luria-Broth medium each, facilitates the production of large amounts of purified recombinant protein without the laborious need for optimization of expression and purification conditions.


Journal of Biological Chemistry | 2018

β1Pix exchange factor stabilizes the ubiquitin ligase Nedd4-2 and plays a critical role in ENaC regulation by AMPK in kidney epithelial cells

Pei-Yin Ho; Hui Li; Tengis S. Pavlov; Roland Tuerk; Diego Tabares; René Brunisholz; Dietbert Neumann; Alexander Staruschenko; Kenneth R. Hallows

Our previous work has established that the metabolic sensor AMP-activated protein kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) by promoting its binding to neural precursor cell–expressed, developmentally down-regulated 4-2, E3 ubiquitin protein ligase (Nedd4-2). Here, using MS analysis and in vitro phosphorylation, we show that AMPK phosphorylates Nedd4-2 at the Ser-444 (Xenopus Nedd4-2) site critical for Nedd4-2 stability. We further demonstrate that the Pak-interacting exchange factor β1Pix is required for AMPK-mediated inhibition of ENaC-dependent currents in both CHO and murine kidney cortical collecting duct (CCD) cells. Short hairpin RNA–mediated knockdown of β1Pix expression in CCD cells attenuated the inhibitory effect of AMPK activators on ENaC currents. Moreover, overexpression of a β1Pix dimerization–deficient mutant unable to bind 14-3-3 proteins (Δ602–611) increased ENaC currents in CCD cells, whereas overexpression of WT β1Pix had the opposite effect. Using additional immunoblotting and co-immunoprecipitation experiments, we found that treatment with AMPK activators promoted the binding of β1Pix to 14-3-3 proteins in CCD cells. However, the association between Nedd4-2 and 14-3-3 proteins was not consistently affected by AMPK activation, β1Pix knockdown, or overexpression of WT β1Pix or the β1Pix-Δ602–611 mutant. Moreover, we found that β1Pix is important for phosphorylation of the aforementioned Nedd4-2 site critical for its stability. Overall, these findings elucidate novel molecular mechanisms by which AMPK regulates ENaC. Specifically, they indicate that AMPK promotes the assembly of β1Pix, 14-3-3 proteins, and Nedd4-2 into a complex that inhibits ENaC by enhancing Nedd4-2 binding to ENaC and its degradation.

Collaboration


Dive into the Roland Tuerk's collaboration.

Top Co-Authors

Avatar

Dietbert Neumann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dietbert Neumann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Benoit Viollet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge