Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland W. Herzog is active.

Publication


Featured researches published by Roland W. Herzog.


Nature Genetics | 2000

Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector.

Mark A. Kay; Catherine S. Manno; Margaret V. Ragni; Peter J. Larson; Linda B. Couto; Alan McClelland; Bertil Glader; Amy J. Chew; Shing Jen Tai; Roland W. Herzog; Valder R. Arruda; Fred Johnson; Ciaran D. Scallan; Erik D. Skarsgard; Alan W. Flake; Katherine A. High

Pre-clinical studies in mice and haemophilic dogs have shown that introduction of an adeno-associated viral (AAV) vector encoding blood coagulation factor IX (F.IX) into skeletal muscle results in sustained expression of F.IX at levels sufficient to correct the haemophilic phenotype. On the basis of these data and additional pre-clinical studies demonstrating an absence of vector-related toxicity, we initiated a clinical study of intramuscular injection of an AAV vector expressing human F.IX in adults with severe haemophilia B. The study has a dose-escalation design, and all patients have now been enrolled in the initial dose cohort (2×1011 vg/kg). Assessment in the first three patients of safety and gene transfer and expression show no evidence of germline transmission of vector sequences or formation of inhibitory antibodies against F.IX. We found that the vector sequences are present in muscle by PCR and Southern-blot analyses of muscle biopsies and we demonstrated expression of F.IX by immunohistochemistry. We observed modest changes in clinical endpoints including circulating levels of F.IX and frequency of F.IX protein infusion. The evidence of gene expression at low doses of vector suggests that dose calculations based on animal data may have overestimated the amount of vector required to achieve therapeutic levels in humans, and that the approach offers the possibility of converting severe haemophilia B to a milder form of the disease.


Nature Medicine | 1999

Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector

Roland W. Herzog; Edmund Y Yang; Linda B. Couto; J. Nathan Hagstrom; Dan Elwell; Paul A. Fields; Melissa Burton; Dwight A. Bellinger; Marjorie S. Read; Kenneth M. Brinkhous; Gregory M. Podsakoff; Timothy C. Nichols; Gary J. Kurtzman; Katherine A. High

Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5 × 1012 vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses

Li Zhong; Baozheng Li; Cathryn Mah; Lakshmanan Govindasamy; Mavis Agbandje-McKenna; Mario Cooper; Roland W. Herzog; Irene Zolotukhin; Kenneth H. Warrington; Kirsten A. Weigel-Van Aken; Jacqueline A. Hobbs; Sergei Zolotukhin; Nicholas Muzyczka; Arun Srivastava

Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have reported that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects transduction by AAV2 vectors by impairing nuclear transport of the vectors. We have also observed that EGFR-PTK can phosphorylate AAV2 capsids at tyrosine residues. Tyrosine-phosphorylated AAV2 vectors enter cells efficiently but fail to transduce effectively, in part because of ubiquitination of AAV capsids followed by proteasome-mediated degradation. We reasoned that mutations of the surface-exposed tyrosine residues might allow the vectors to evade phosphorylation and subsequent ubiquitination and, thus, prevent proteasome-mediated degradation. Here, we document that site-directed mutagenesis of surface-exposed tyrosine residues leads to production of vectors that transduce HeLa cells ≈10-fold more efficiently in vitro and murine hepatocytes nearly 30-fold more efficiently in vivo at a log lower vector dose. Therapeutic levels of human Factor IX (F.IX) are also produced at an ≈10-fold reduced vector dose. The increased transduction efficiency of tyrosine-mutant vectors is due to lack of capsid ubiquitination and improved intracellular trafficking to the nucleus. These studies have led to the development of AAV vectors that are capable of high-efficiency transduction at lower doses, which has important implications in their use in human gene therapy.


Gene Therapy | 2010

Progress and prospects: immune responses to viral vectors

Sushrusha Nayak; Roland W. Herzog

Viral vectors are potent gene delivery platforms used for the treatment of genetic and acquired diseases. However, just as viruses have evolved to infect cells efficiently, the immune system has evolved to fight off what it perceives as invading pathogens. Therefore, innate immunity and antigen-specific adaptive immune responses against vector-derived antigens reduce the efficacy and stability of in vivo gene transfer. In addition, a number of vectors are derived from parent viruses that humans encounter through natural infection, resulting in preexisting antibodies and possibly in memory responses against vector antigens. Similarly, antibody and T-cell responses may be directed against therapeutic gene products that often differ from the endogenous nonfunctional or absent protein that is being replaced. As details and mechanisms of such immune reactions are uncovered, novel strategies are being developed, and vectors are being specifically engineered to avoid, suppress or manipulate the response, ideally resulting in sustained expression and immune tolerance to the transgene product. This review provides a summary of our current knowledge of the interactions between the immune system adeno-associated virus, adenoviral and lentiviral vectors, and their transgene products.


Journal of Clinical Investigation | 2003

Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer

Federico Mingozzi; Yi-Lin Liu; Eric Dobrzynski; Antje Kaufhold; Jianhua Liu; YuQin Wang; Valder R. Arruda; Katherine A. High; Roland W. Herzog

Gene replacement therapy is an attractive approach for treatment of genetic disease, but may be complicated by the risk of a neutralizing immune response to the therapeutic gene product. There are examples of humoral and cellular immune responses against the transgene product as well as absence of such responses, depending on vector design and the underlying mutation in the dysfunctional gene. It has been unclear, however, whether transgene expression can induce tolerance to the therapeutic antigen. Here, we demonstrate induction of immune tolerance to a secreted human coagulation factor IX (hF.IX) antigen by adeno-associated viral gene transfer to the liver. Tolerized mice showed absence of anti-hF.IX and substantially reduced in vitro T cell responses after immunization with hF.IX in adjuvant. Tolerance induction was antigen specific, affected a broad range of Th cell subsets, and was favored by higher levels of transgene expression as determined by promoter strength, vector dose, and mouse strain. Hepatocyte-derived hF.IX expression induced regulatory CD4(+) T cells that can suppress anti-hF.IX formation after adoptive transfer. With a strain-dependent rate of success, tolerance to murine F.IX was induced in mice with a large F.IX gene deletion, supporting the relevance of these data for treatment of hemophilia B and other genetic diseases.


Blood | 2009

Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy

Glenn P. Niemeyer; Roland W. Herzog; Jane D. Mount; Valder R. Arruda; D. Michael Tillson; John T. Hathcock; Frederik W. van Ginkel; Katherine A. High; Clinton D. Lothrop

Preclinical studies and initial clinical trials have documented the feasibility of adenoassociated virus (AAV)-mediated gene therapy for hemophilia B. In an 8-year study, inhibitor-prone hemophilia B dogs (n = 2) treated with liver-directed AAV2 factor IX (FIX) gene therapy did not have a single bleed requiring FIX replacement, whereas dogs undergoing muscle-directed gene therapy (n = 3) had a bleed frequency similar to untreated FIX-deficient dogs. Coagulation tests (whole blood clotting time [WBCT], activated clotting time [ACT], and activated partial thromboplastin time [aPTT]) have remained at the upper limits of the normal ranges in the 2 dogs that received liver-directed gene therapy. The FIX activity has remained stable between 4% and 10% in both liver-treated dogs, but is undetectable in the dogs undergoing muscle-directed gene transfer. Integration site analysis by linear amplification-mediated polymerase chain reaction (LAM-PCR) suggested the vector sequences have persisted predominantly in extrachromosomal form. Complete blood count (CBC), serum chemistries, bile acid profile, hepatic magnetic resonance imaging (MRI) and computed tomography (CT) scans, and liver biopsy were normal with no evidence for tumor formation. AAV-mediated liver-directed gene therapy corrected the hemophilia phenotype without toxicity or inhibitor development in the inhibitor-prone null mutation dogs for more than 8 years.


Human Genetics | 2006

Treatment of human disease by adeno-associated viral gene transfer

Kenneth H. Warrington; Roland W. Herzog

During the past decade, in vivo administration of viral gene transfer vectors for treatment of numerous human diseases has been brought from bench to bedside in the form of clinical trials, mostly aimed at establishing the safety of the protocol. In preclinical studies in animal models of human disease, adeno-associated viral (AAV) vectors have emerged as a favored gene transfer system for this approach. These vectors are derived from a replication-deficient, non-pathogenic parvovirus with a single-stranded DNA genome. Efficient gene transfer to numerous target cells and tissues has been described. AAV is particularly efficient in transduction of non-dividing cells, and the vector genome persists predominantly in episomal forms. Substantial correction, and in some instances complete cure, of genetic disease has been obtained in animal models of hemophilia, lysosomal storage disorders, retinal diseases, disorders of the central nervous system, and other diseases. Therapeutic expression often lasted for months to years. Treatments of genetic disorders, cancer, and other acquired diseases are summarized in this review. Vector development, results in animals, early clinical experience, as well as potential hurdles and challenges are discussed.


Human Gene Therapy | 2002

Influence of Vector Dose on Factor IX-Specific T and B Cell Responses in Muscle-Directed Gene Therapy

Roland W. Herzog; Paul A. Fields; Valder R. Arruda; Jeff O. Brubaker; Elina Armstrong; Darryl McClintock; Dwight A. Bellinger; Linda B. Couto; Timothy C. Nichols; Katherine A. High

Intramuscular injection of an adeno-associated virus (AAV) vector has resulted in vector dose-dependent, stable expression of canine factor IX (cF.IX) in hemophilia B dogs with an F.IX missense mutation (Herzog et al., Nat. Med. 1999;5:56-63). The use of a species-specific transgene allowed us to study risks and characteristics of antibody formation against the therapeutic transgene product. We analyzed seven dogs that had been injected at a single time point at multiple intramuscular sites with varying vector doses (dose per kilogram, dose per animal, dose per site). Comparison of individual animals suggests an increased likelihood of inhibitory anti-cF.IX (inhibitor) development with increased vector doses, with dose per site showing the strongest correlation with the risk of inhibitor formation. In six of seven animals, such immune responses were either absent or transient, and therefore did not prevent sustained systemic expression of cF.IX. Transient inhibitory/neutralizing anti-cF.IX responses occurred at vector doses of 2 x 10(12)/site, whereas a 6-fold higher dose resulted in a longer lasting, higher titer inhibitor. Anti-cF.IX was efficiently blocked in an eighth animal that was injected with a high vector dose per site, but in addition received transient immune suppression. Inhibitor formation was characterized by synthesis of two IgG subclasses and in vitro proliferation of lymphocytes to cF.IX antigen, indicating a helper T cell-dependent mechanism. Anti-cF.IX formation is likely influenced by the extent of local antigen presentation and may be avoided by limited vector doses or by transient immune modulation.


Virology | 2008

Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

Li Zhong; Baozheng Li; Giridhararao Jayandharan; Cathryn Mah; Lakshmanan Govindasamy; Mavis Agbandje-McKenna; Roland W. Herzog; Kirsten A. Weigel-Van Aken; Jacqueline A. Hobbs; Sergei Zolotukhin; Nicholas Muzyczka; Arun Srivastava

We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by approximately 68% and approximately 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice

Dheeraj Verma; Babak Moghimi; Paul A. LoDuca; Harminder D. Singh; Brad E. Hoffman; Roland W. Herzog; Henry Daniell

To address complications of pathogenic antibody or life-threatening anaphylactic reactions in protein replacement therapy for patients with hemophilia or other inherited protein deficiencies, we have developed a prophylactic protocol using a murine hemophilia B model. Oral delivery of coagulation factor IX fused with cholera toxin β-subunit (with or without a furin cleavage site; CTB-FFIX or CTB-FIX), expressed in chloroplasts (up to 3.8% soluble protein or 0.4 mg/g leaf tissue), bioencapsulated in plant cells, effectively blocked formation of inhibitory antibodies (undetectable or up to 100-fold less than controls). Moreover, this treatment eliminated fatal anaphylactic reactions that occurred after four to six exposures to intravenous F.IX. Whereas only 20–25% of control animals survived after six to eight F.IX doses, 90–93% of F.IX-fed mice survived 12 injections without signs of allergy or anaphylaxis. Immunostaining confirmed delivery of F.IX to Peyers patches in the ileum. Within 2–5 h, feeding of CTB-FFIX additionally resulted in systemic delivery of F.IX antigen. This high-responder strain of hemophilia B mice represents a new animal model to study anaphylactic reactions. The protocol was effective over a range of oral antigen doses (equivalent to 5–80 μg recombinant F.IX/kg), and controlled inhibitor formation and anaphylaxis long-term, up to 7 months (∼40% life span of this mouse strain). Oral antigen administration caused a deviant immune response that suppressed formation of IgE and inhibitory antibodies. This cost-effective and efficient approach of antigen delivery to the gut should be applicable to several genetic diseases that are prone to pathogenic antibody responses during treatment.

Collaboration


Dive into the Roland W. Herzog's collaboration.

Top Co-Authors

Avatar

Katherine A. High

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Valder R. Arruda

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cox Terhorst

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ou Cao

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Daniell

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge