Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rolando A. Gittens is active.

Publication


Featured researches published by Rolando A. Gittens.


Biomaterials | 2011

The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation

Rolando A. Gittens; Taylor McLachlan; Rene Olivares-Navarrete; Ye Cai; Simon Berner; Rina Tannenbaum; Zvi Schwartz; Kenneth H. Sandhage; Barbara D. Boyan

Titanium (Ti) osseointegration is critical for the success of dental and orthopedic implants. Previous studies have shown that surface roughness at the micro- and submicro-scales promotes osseointegration by enhancing osteoblast differentiation and local factor production. Only relatively recently have the effects of nanoscale roughness on cell response been considered. The aim of the present study was to develop a simple and scalable surface modification treatment that introduces nanoscale features to the surfaces of Ti substrates without greatly affecting other surface features, and to determine the effects of such superimposed nano-features on the differentiation and local factor production of osteoblasts. A simple oxidation treatment was developed for generating controlled nanoscale topographies on Ti surfaces, while retaining the starting micro-/submicro-scale roughness. Such nano-modified surfaces also possessed similar elemental compositions, and exhibited similar contact angles, as the original surfaces, but possessed a different surface crystal structure. MG63 cells were seeded on machined (PT), nano-modified PT (NMPT), sandblasted/acid-etched (SLA), and nano-modified SLA (NMSLA) Ti disks. The results suggested that the introduction of such nanoscale structures in combination with micro-/submicro-scale roughness improves osteoblast differentiation and local factor production, which, in turn, indicates the potential for improved implant osseointegration in vivo.


Acta Biomaterialia | 2014

A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects

Rolando A. Gittens; Lutz Scheideler; Frank Rupp; Sharon L. Hyzy; Juergen Geis-Gerstorfer; Zvi Schwartz; Barbara D. Boyan

Dental and orthopedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues.


Acta Biomaterialia | 2013

The Roles of Titanium Surface Micro/Nanotopography and Wettability on the Differential Response of Human Osteoblast Lineage Cells

Rolando A. Gittens; Rene Olivares-Navarrete; Alice Cheng; David M. Anderson; Taylor McLachlan; Ingrid Stephan; Jürgen Geis-Gerstorfer; Kenneth H. Sandhage; Andrei G. Fedorov; Frank Rupp; Barbara D. Boyan; Rina Tannenbaum; Zvi Schwartz

Surface micro- and nanostructural modifications of dental and orthopedic implants have shown promising in vitro, in vivo and clinical results. Surface wettability has also been suggested to play an important role in osteoblast differentiation and osseointegration. However, the available techniques to measure surface wettability are not reliable on clinically relevant, rough surfaces. Furthermore, how the differentiation state of osteoblast lineage cells impacts their response to micro/nanostructured surfaces, and the role of wettability on this response, remain unclear. In the current study, surface wettability analyses (optical sessile drop analysis, environmental scanning electron microscopic analysis and the Wilhelmy technique) indicated hydrophobic static responses for deposited water droplets on microrough and micro/nanostructured specimens, while hydrophilic responses were observed with dynamic analyses of micro/nanostructured specimens. The maturation and local factor production of human immature osteoblast-like MG63 cells was synergistically influenced by nanostructures superimposed onto microrough titanium (Ti) surfaces. In contrast, human mesenchymal stem cells cultured on micro/nanostructured surfaces in the absence of exogenous soluble factors exhibited less robust osteoblastic differentiation and local factor production compared to cultures on unmodified microroughened Ti. Our results support previous observations using Ti6Al4V surfaces showing that recognition of surface nanostructures and subsequent cell response is dependent on the differentiation state of osteoblast lineage cells. The results also indicate that this effect may be partly modulated by surface wettability. These findings support the conclusion that the successful osseointegration of an implant depends on contributions from osteoblast lineage cells at different stages of osteoblast commitment.


Acta Biomaterialia | 2014

Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants.

Rolando A. Gittens; Rene Olivares-Navarrete; Zvi Schwartz; Barbara D. Boyan

The use of spinal implants for spine fusion has been steadily increasing to avoid the risks of complications and donor site morbidity involved when using autologous bone. A variety of fusion cages are clinically available, with different shapes and chemical compositions. However, detailed information about their surface properties and the effects of such properties on osteogenesis is lacking in the literature. Here we evaluate the role of surface properties for spinal implant applications, covering some of the key biological processes that occur around an implant and focusing on the role of surface properties, specifically the surface structure, on osseointegration, drawing examples from other implantology fields when required. Our findings revealed that surface properties such as microroughness and nanostructures can directly affect early cell behavior and long-term osseointegration. Microroughness has been well established in the literature to have a beneficial effect on osseointegration of implants. In the case of the role of nanostructures, the number of reports is increasing and most studies reveal a positive effect from the nanostructures alone and a synergistic effect when combined with microrough surfaces. Long-term clinical results are nevertheless necessary to establish the full implications of surface nanomodifications.


Acta Biomaterialia | 2014

A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects

Frank Rupp; Rolando A. Gittens; Lutz Scheideler; Abraham Marmur; Barbara D. Boyan; Zvi Schwartz; Juergen Geis-Gerstorfer

The surface wettability of biomaterials determines the biological cascade of events at the biomaterial/host interface. Wettability is modulated by surface characteristics, such as surface chemistry and surface topography. However, the design of current implant surfaces focuses mainly on specific micro- and nanotopographical features, and is still far from predicting the concomitant wetting behavior. There is an increasing interest in understanding the wetting mechanisms of implant surfaces and the role of wettability in the biological response at the implant/bone or implant/soft tissue interface. Fundamental knowledge related to the influence of surface roughness (i.e. a quantification of surface topography) on titanium and titanium alloy surface wettability, and the different associated wetting regimes, can improve our understanding of the role of wettability of rough implant surfaces on the biological outcome. Such an approach has been applied to biomaterial surfaces only in a limited way. Focusing on titanium dental and orthopaedic implants, the present study reviews the current knowledge on the wettability of biomaterial surfaces, encompassing basic and applied aspects that include measurement techniques, thermodynamic aspects of wetting and models predicting topographical and roughness effects on the wetting behavior.


Biomaterials | 2012

Differential Responses of Osteoblast Lineage Cells to Nanotopographically-Modified, Microroughened Titanium-Aluminum-Vanadium Alloy Surfaces

Rolando A. Gittens; Rene Olivares-Navarrete; Taylor McLachlan; Ye Cai; Sharon L. Hyzy; Jennifer M. Schneider; Zvi Schwartz; Kenneth H. Sandhage; Barbara D. Boyan

Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications.


The Spine Journal | 2012

Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone

Rene Olivares-Navarrete; Rolando A. Gittens; Jennifer M. Schneider; Sharon L. Hyzy; David A. Haithcock; Peter F. Ullrich; Zvi Schwartz; Barbara D. Boyan

BACKGROUND CONTEXT Multiple biomaterials are clinically available to spine surgeons for performing interbody fusion. Poly-ether-ether-ketone (PEEK) is used frequently for lumbar spine interbody fusion, but alternative materials are also used, including titanium (Ti) alloys. Previously, we showed that osteoblasts exhibit a more differentiated phenotype when grown on machined or grit-blasted titanium aluminum vanadium (Ti6Al4V) alloys with micron-scale roughened surfaces than when grown on smoother Ti6Al4V surfaces or on tissue culture polystyrene (TCPS). We hypothesized that osteoblasts cultured on rough Ti alloy substrates would present a more mature osteoblast phenotype than cells cultured on PEEK, suggesting that textured Ti6Al4V implants may provide a more osteogenic surface for interbody fusion devices. PURPOSE The aim of the present study was to compare osteoblast response to smooth Ti6Al4V (sTiAlV) and roughened Ti6Al4V (rTiAlV) with their response to PEEK with respect to differentiation and production of factors associated with osteogenesis. STUDY DESIGN This in vitro study compared the phenotype of human MG63 osteoblast-like cells cultured on PEEK, sTiAlV, or rTiAlV surfaces and their production of bone morphogenetic proteins (BMPs). METHODS Surface properties of PEEK, sTiAlV, and rTiAlV discs were determined. Human MG63 cells were grown on TCPS and the discs. Confluent cultures were harvested, and cell number, alkaline phosphatase-specific activity, and osteocalcin were measured as indicators of osteoblast maturation. Expression of messenger RNA (mRNA) for BMP2 and BMP4 was measured by real-time polymerase chain reaction. Levels of BMP2, BMP4, and BMP7 proteins were also measured in the conditioned media of the cell cultures. RESULTS Although roughness measurements for sTiAlV (S(a)=0.09±0.01), PEEK (S(a)=0.43±0.07), and rTiAlV (S(a)=1.81±0.51) varied, substrates had similar contact angles, indicating comparable wettability. Cell morphology differed depending on the surface. Cells cultured on Ti6Al4V had lower cell number and increased alkaline phosphatase specific activity, osteocalcin, BMP2, BMP4, and BMP7 levels in comparison to PEEK. In particular, roughness significantly increased the mRNA levels of BMP2 and BMP4 and secreted levels of BMP4. CONCLUSIONS These data demonstrate that rTiAlV substrates increase osteoblast maturation and produce an osteogenic environment that contains BMP2, BMP4, and BMP7. The results show that modifying surface structure is sufficient to create an osteogenic environment without addition of exogenous factors, which may induce better and faster bone during interbody fusion.


Journal of Dental Research | 2011

Electrical Implications of Corrosion for Osseointegration of Titanium Implants

Rolando A. Gittens; Rene Olivares-Navarrete; Rina Tannenbaum; Barbara D. Boyan; Zvi Schwartz

The success rate of titanium implants for dental and orthopedic applications depends on the ability of surrounding bone tissue to integrate with the surface of the device, and it remains far from ideal in patients with bone compromised by physiological factors. The electrical properties and electrical stimulation of bone have been shown to control its growth and healing and can enhance osseointegration. Bone cells are also sensitive to the chemical products generated during corrosion events, but less is known about how the electrical signals associated with corrosion might affect osseointegration. The metallic nature of the materials used for implant applications and the corrosive environments found in the human body, in combination with the continuous and cyclic loads to which these implants are exposed, may lead to corrosion and its corresponding electrochemical products. The abnormal electrical currents produced during corrosion can convert any metallic implant into an electrode, and the negative impact on the surrounding tissue due to these extreme signals could be an additional cause of poor performance and rejection of implants. Here, we review basic aspects of the electrical properties and electrical stimulation of bone, as well as fundamental concepts of aqueous corrosion and its electrical and clinical implications.


The Spine Journal | 2013

Rough titanium alloys regulate osteoblast production of angiogenic factors

Rene Olivares-Navarrete; Sharon L. Hyzy; Rolando A. Gittens; Jennifer M. Schneider; David A. Haithcock; Peter F. Ullrich; Paul Slosar; Zvi Schwartz; Barbara D. Boyan

BACKGROUND CONTEXT Polyether-ether-ketone (PEEK) and titanium-aluminum-vanadium (titanium alloy) are used frequently in lumbar spine interbody fusion. Osteoblasts cultured on microstructured titanium generate an environment characterized by increased angiogenic factors and factors that inhibit osteoclast activity mediated by integrin α2β1 signaling. It is not known if this is also true of osteoblasts on titanium alloy or PEEK. PURPOSE The purpose of this study was to determine if osteoblasts generate an environment that supports angiogenesis and reduces osteoclastic activity when grown on smooth titanium alloy, rough titanium alloy, or PEEK. STUDY DESIGN This in vitro study compared angiogenic factor production and integrin gene expression of human osteoblast-like MG63 cells cultured on PEEK or titanium-aluminum-vanadium (titanium alloy). METHODS MG63 cells were grown on PEEK, smooth titanium alloy, or rough titanium alloy. Osteogenic microenvironment was characterized by secretion of osteoprotegerin and transforming growth factor beta-1 (TGF-β1), which inhibit osteoclast activity and angiogenic factors including vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), and angiopoietin-1 (ANG-1). Expression of integrins, transmembrane extracellular matrix recognition proteins, was measured by real-time polymerase chain reaction. RESULTS Culture on titanium alloy stimulated osteoprotegerin, TGF-β1, VEGF-A, FGF-2, and angiopoietin-1 production, and levels were greater on rough titanium alloy than on smooth titanium alloy. All factors measured were significantly lower on PEEK than on smooth or rough titanium alloy. Culture on titanium alloy stimulated expression of messenger RNA for integrins that recognize Type I collagen in comparison with PEEK. CONCLUSIONS Rough titanium alloy stimulated cells to create an osteogenic-angiogenic microenvironment. The osteogenic-angiogenic responses to titanium alloy were greater than PEEK and greater on rough titanium alloy than on smooth titanium alloy. Surface features regulated expression of integrins important in collagen recognition. These factors may increase bone formation, enhance integration, and improve implant stability in interbody spinal fusions.


Acta Biomaterialia | 2012

Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential.

Xiaokun Wang; Rolando A. Gittens; Rosemary Song; Rina Tannenbaum; Rene Olivares-Navarrete; Zvi Schwartz; Haifeng Chen; Barbara D. Boyan

Ideal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the three-dimensional structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium implants, or more appropriately the TiO2 passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nanofiber meshes with different surface microroughness and nanofiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface microroughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nanofiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factors.

Collaboration


Dive into the Rolando A. Gittens's collaboration.

Top Co-Authors

Avatar

Zvi Schwartz

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Barbara D. Boyan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rene Olivares-Navarrete

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Sharon L. Hyzy

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Sandhage

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Haithcock

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Taylor McLachlan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ye Cai

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge