Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rolene Bauer is active.

Publication


Featured researches published by Rolene Bauer.


Journal of Applied Microbiology | 2001

Growth optimization of Pediococcus damnosus NCFB 1832 and the influence of pH and nutrients on the production of pediocin PD-1.

H.A. Nel; Rolene Bauer; Erick Vandamme; Leon M. T. Dicks

Aims: Optimization of the growth of Pediococcus damnosus NCFB 1832 and the production of pediocin PD‐1 by traditional fermentation methods.


Plant Physiology | 2010

Virus induced gene silencing of plastidial soluble inorganic pyrophosphatase impairs essential leaf anabolic pathways and reduces drought stress tolerance in Nicotiana benthamiana

Gavin M. George; Margaretha J. van der Merwe; Adriano Nunes-Nesi; Rolene Bauer; Alisdair R. Fernie; Jens Kossmann; James R. Lloyd

The role of pyrophosphate in primary metabolism is poorly understood. Here, we report on the transient down-regulation of plastid-targeted soluble inorganic pyrophosphatase in Nicotiana benthamiana source leaves. Physiological and metabolic perturbations were particularly evident in chloroplastic central metabolism, which is reliant on fast and efficient pyrophosphate dissipation. Plants lacking plastidial soluble inorganic pyrophosphatase (psPPase) were characterized by increased pyrophosphate levels, decreased starch content, and alterations in chlorophyll and carotenoid biosynthesis, while constituents like amino acids (except for histidine, serine, and tryptophan) and soluble sugars and organic acids (except for malate and citrate) remained invariable from the control. Furthermore, translation of Rubisco was significantly affected, as observed for the amounts of the respective subunits as well as total soluble protein content. These changes were concurrent with the fact that plants with reduced psPPase were unable to assimilate carbon to the same extent as the controls. Furthermore, plants with lowered psPPase exposed to mild drought stress showed a moderate wilting phenotype and reduced vitality, which could be correlated to reduced abscisic acid levels limiting stomatal closure. Taken together, the results suggest that plastidial pyrophosphate dissipation through psPPase is indispensable for vital plant processes.


Planta | 2012

Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit

Christelle Cronje; Gavin M. George; Alisdair R. Fernie; Jan P. I. Bekker; Jens Kossmann; Rolene Bauer

Ascorbate (AsA) plays a fundamental role in redox homeostasis in plants and animals, primarily by scavenging reactive oxygen species. Three genes, representing diverse steps putatively involved in plant AsA biosynthesis pathways, were cloned and independently expressed in Solanum lycopersicum (tomato) under the control of the CaMV 35S promoter. Yeast-derived GDP-mannose pyrophosphorylase (GMPase) and arabinono-1,4-lactone oxidase (ALO), as well as myo-inositol oxygenase 2 (MIOX2) from Arabidopsis thaliana, were targeted. Increases in GMPase activity were concomitant with increased AsA levels of up to 70% in leaves, 50% in green fruit, and 35% in red fruit. Expression of ALO significantly pulled biosynthetic flux towards AsA in leaves and green fruit by up to 54 and 25%, respectively. Changes in AsA content in plants transcribing the MIOX2 gene were inconsistent in different tissue. On the other hand, MIOX activity was strongly correlated with cell wall uronic acid levels, suggesting that MIOX may be a useful tool for the manipulation of cell wall composition. In conclusion, the Smirnoff–Wheeler pathway showed great promise as a target for biotechnological manipulation of ascorbate levels in tomato.


International Journal of Food Microbiology | 2010

Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli.

Rolene Bauer; Maret du Toit; Jens Kossmann

Lactic acid bacteria belonging to the genus Lactobacillus are known to convert glycerol into 3-hydroxypropionaldehyde (3-HPA) during anaerobic glycerol fermentation. Wine quality can be gravely compromised by the accumulation of 3-HPA, due to its spontaneous conversion to acrolein under wine making conditions. Acrolein is not only a dangerous substance for the living cell, but has been implicated in the development of unpleasant bitterness in beverages. This study evaluates the effect of individual environmental parameters on 3-HPA production by Lactobacillus reuteri DSMZ 20016, which only proved possible under conditions that allow accumulation well below the threshold concentration affecting cell viability. 3-HPA production was optimal at pH 6 and in the presence of 300 mM glycerol. Production increased with an increase in cell concentration up to an OD(600) of 50, whereas higher cell concentrations inhibited accumulation. Data presented in this study suggest that 3-HPA plays a role in regulating its own production through quorum sensing. Glycerol dehydratase possessing bacterial strains isolated from South African red wine, L. pentosus and L. brevis, tested positive for 3-HPA accumulation. 3-HPA is normally intracellularly reduced to 1,3-propanediol. This is the first study demonstrating the ability of wine lactobacilli to accumulate 3-HPA in the fermentation media. Recommendations are made on preventing the formation of acrolein and its precursor 3-HPA in wine.


International Journal of Food Microbiology | 2009

Exopolysaccharide production by lactose-hydrolyzing bacteria isolated from traditionally fermented milk.

Rolene Bauer; Jan P. I. Bekker; Nathan van Wyk; Christian du Toit; Leon M. T. Dicks; Jens Kossmann

With increasing consumer demands for safer, healthier and more natural products, bacterially produced exopolysaccharides (EPSs) are becoming a viable option as an additive in designer-type foods. Fresh milk samples from cattle and sheep were collected from informal settlements in South Africa. After a three day incubation period at 25 degrees C, 550 bacterial strains were isolated and evaluated for EPS production from lactose as sole carbon source. Strains producing EPS on lactose were identified to species level with 16S rRNA gene sequencing and encompass 11 Gram-positive and 6 Gram-negative bacteria. EPS production was assigned for the first time to members of the species Staphylococcus hominis and Enterococcus lactis, and also to apparently novel species of the genera Sphingomonas and Acinetobacter. The polymers consisted mainly out of galactose and glucose, while a few isolates also incorporated rhamnose. Isolates produced diverse biopolymers as seen by significant differences in monomer ratios.


Journal of Agricultural and Food Chemistry | 2010

Acrolein in wine: importance of 3-hydroxypropionaldehyde and derivatives in production and detection.

Rolene Bauer; Don A. Cowan; Andrew M. Crouch

Certain lactic acid bacteria strains belonging to the genus Lactobacillus have been implicated in the accumulation of 3-hydroxypropionaldehyde (3-HPA) during anaerobic glycerol fermentation. In aqueous solution 3-HPA undergoes reversible dimerization and hydration, resulting in an equilibrium state between different derivatives. Wine quality may be compromised by the presence of 3-HPA due to the potential for spontaneous conversion into acrolein under winemaking conditions. Acrolein is highly toxic and has been implicated in the development of bitterness in wine. Interconversion between 3-HPA derivatives and acrolein is a complex and highly dynamic process driven by hydration and dehydration reactions. Acrolein is furthermore highly reactive and its steady-state concentration in complex systems very low. As a result, analytical detection and quantification in solution is problematic. This paper reviews the biochemical and environmental conditions leading to accumulation of its precursor, 3-HPA. Recent advances in analytical detection are summarized, and the roles played by natural chemical derivatives are highlighted.


Bioresource Technology | 2015

Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: A potential sustainable feedstock for hydrothermal gasification

Stephen Mackay; Eduardo Pereira Gomes; Christof Holliger; Rolene Bauer; Jean-Paul Schwitzguébel

Despite recent advances in down-stream processing, production of microalgae remains substantially limited because of economical reasons. Harvesting and dewatering are the most energy-intensive processing steps in their production and contribute 20-30% of total operational cost. Bio-flocculation of microalgae by co-cultivation with filamentous fungi relies on the development of large structures that facilitate cost effective harvesting. A yet unknown filamentous fungus was isolated as a contaminant from a microalgal culture and identified as Isaria fumosorosea. Blastospores production was optimized in minimal medium and the development of pellets, possibly lichens, was followed when co-cultured with Chlorella sorokiniana under strict autotrophic conditions. Stable pellets (1-2mm) formed rapidly at pH 7-8, clearing the medium of free algal cells. Biomass was harvested with large inexpensive filters, generating wet slurry suitable for hydrothermal gasification. Nutrient rich brine from the aqueous phase of hydrothermal gasification supported growth of the fungus and may increase the process sustainability.


Transgenic Research | 2011

Upregulation of pyrophosphate: Fructose 6-phosphate 1-phosphotransferase (PFP) activity in strawberry

C.E. Basson; Jan-Hendrik Groenewald; Jens Kossmann; C. Cronjé; Rolene Bauer

Pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) is a cytosolic enzyme catalyzing the first committed step in glycolysis by reversibly phosphorylating fructose-6-phosphate to fructose-1,6-bisphosphate. The position of PFP in glycolytic and gluconeogenic metabolism, as well as activity patterns in ripening strawberry, suggest that the enzyme may influence carbohydrate allocation to sugars and organic acids. Fructose-2,6-bisphosphate activates and tightly regulates PFP activity in plants and has hampered attempts to increase PFP activity through overexpression. Heterologous expression of a homodimeric isoform from Giardia lamblia, not regulated by fructose-2,6-bisphosphate, was therefore employed to ensure in vivo increases in PFP activity. The coding sequence was placed into a constitutive expression cassette under control of the cauliflower mosaic virus 35S promoter and introduced into strawberry by Agrobacterium tumefaciens-mediated transformation. Heterologous expression of PFP resulted in an up to eightfold increase in total activity in ripe berries collected over two consecutive growing seasons. Total sugar and organic acid content of transgenic berries harvested during the first season were not affected when compared to the wild type, however, fructose content increased at the expense of sucrose. In the second season, total sugar content and composition remained unchanged while the citrate content increased slightly. Considering that PFP catalyses a reversible reaction, PFP activity appears to shift between gluconeogenic and glycolytic metabolism, depending on the metabolic status of the cell.


Biotechnology Journal | 2012

Virus-induced multiple gene silencing to study redundant metabolic pathways in plants: Silencing the starch degradation pathway in Nicotiana benthamiana

Gavin M. George; Rolene Bauer; Andreas Blennow; Jens Kossmann; James R. Lloyd

Virus-induced gene silencing (VIGS) is a rapid technique that allows for specific and reproducible post-transcriptional degradation of targeted mRNA. The method has been proven efficient for suppression of expression of many single enzymes. The metabolic networks of plants, however, often contain isoenzymes and gene families that are able to compensate for a mutation and mask the development of a silencing phenotype. Here, we show the application of multiple gene VIGS repression for the study of these redundant biological pathways. Several genes in the starch degradation pathway [disproportionating enzyme 1; (DPE1), disproportionating enzyme 2 (DPE2), and GWD] were silenced. The functionally distinct DPE enzymes are present in alternate routes for sugar export to the cytoplasm and result in an increase in starch production when silenced individually. Simultaneous silencing of DPE1 and DPE2 in Nicotiana benthamiana resulted in a near complete suppression in starch and accumulation of malto-oligosaccharides.


PLOS ONE | 2015

Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield.

Stanton Hector; Kyle Willard; Rolene Bauer; Inonge Mulako; Etienne Slabbert; Jens Kossmann; Gavin M. George

Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation.

Collaboration


Dive into the Rolene Bauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Cronjé

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar

C.E. Basson

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christof Holliger

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge