Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rolf H. Reichle is active.

Publication


Featured researches published by Rolf H. Reichle.


Journal of Climate | 2011

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications

Michele M. Rienecker; Max J. Suarez; Ronald Gelaro; Ricardo Todling; Julio T. Bacmeister; Emily Liu; Michael G. Bosilovich; Siegfried D. Schubert; Lawrence L. Takacs; Gi-Kong Kim; Stephen Bloom; Junye Chen; Douglas W. Collins; Austin Conaty; Arlindo da Silva; Wei Gu; Joanna Joiner; Randal D. Koster; Robert Lucchesi; Andrea Molod; Tommy Owens; Steven Pawson; Philip J. Pegion; Christopher R. Redder; Rolf H. Reichle; Franklin R. Robertson; Albert G. Ruddick; Meta Sienkiewicz; John S. Woollen

AbstractThe Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...


Proceedings of the IEEE | 2010

The Soil Moisture Active Passive (SMAP) Mission

Dara Entekhabi; Eni G. Njoku; Peggy E. O'Neill; Kent H. Kellogg; Wade T. Crow; Wendy N. Edelstein; Jared K. Entin; Shawn D. Goodman; Thomas J. Jackson; Joel T. Johnson; John S. Kimball; Jeffrey R. Piepmeier; Randal D. Koster; Neil Martin; Kyle C. McDonald; Mahta Moghaddam; Susan Moran; Rolf H. Reichle; Jiachun Shi; Michael W. Spencer; Samuel W. Thurman; Leung Tsang; Jakob J. van Zyl

The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Councils Decadal Survey. SMAP will make global measurements of the soil moisture present at the Earths land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere. The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers. Soil moisture measurements are also directly applicable to flood assessment and drought monitoring. SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP is scheduled for launch in the 2014-2015 time frame.


Monthly Weather Review | 2002

Hydrologic Data Assimilation with the Ensemble Kalman Filter

Rolf H. Reichle; Dennis McLaughlin; Dara Entekhabi

Soil moisture controls the partitioning of moisture and energy fluxes at the land surface and is a key variable in weather and climate prediction. The performance of the ensemble Kalman filter (EnKF) for soil moisture estimation is assessed by assimilating L-band (1.4 GHz) microwave radiobrightness observations into a land surface model. An optimal smoother (a dynamic variational method) is used as a benchmark for evaluating the filter’s performance. In a series of synthetic experiments the effect of ensemble size and non-Gaussian forecast errors on the estimation accuracy of the EnKF is investigated. With a state vector dimension of 4608 and a relatively small ensemble size of 30 (or 100; or 500), the actual errors in surface soil moisture at the final update time are reduced by 55% (or 70%; or 80%) from the value obtained without assimilation (as compared to 84% for the optimal smoother). For robust error variance estimates, an ensemble of at least 500 members is needed. The dynamic evolution of the estimation error variances is dominated by wetting and drying events with high variances during drydown and low variances when the soil is either very wet or very dry. Furthermore, the ensemble distribution of soil moisture is typically symmetric except under very dry or wet conditions when the effects of the nonlinearities in the model become significant. As a result, the actual errors are consistently larger than ensemble-derived forecast and analysis error variances. This suggests that the update is suboptimal. However, the degree of suboptimality is relatively small and results presented here indicate that the EnKF is a flexible and robust data assimilation option that gives satisfactory estimates even for moderate ensemble sizes.


Geophysical Research Letters | 2004

Bias reduction in short records of satellite soil moisture

Rolf H. Reichle; Randal D. Koster

[1] Although surface soil moisture data from different sources (satellite retrievals, ground measurements, and land model integrations of observed meteorological forcing data) have been shown to contain consistent and useful information in their seasonal cycle and anomaly signals, they typically exhibit very different mean values and variability. These biases pose a severe obstacle to exploiting the useful information contained in satellite retrievals through data assimilation. A simple method of bias removal is to match the cumulative distribution functions (cdf) of the satellite and model data. However, accurate cdf estimation typically requires a long record of satellite data. We demonstrate here that by using spatial sampling with a 2 degree moving window we can obtain local statistics based on a one-year satellite record that are a good approximation to those that would be derived from a much longer time series. This result should increase the usefulness of relatively short satellite data records.


Journal of Climate | 2011

Assessment and Enhancement of MERRA Land Surface Hydrology Estimates

Rolf H. Reichle; Randal D. Koster; Gabrielle De Lannoy; Barton A. Forman; Q. Liu; Sarith P. P. Mahanama; Ally M. Toure

AbstractThe Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979–present. This study introduces a supplemental and improved set of land surface hydrological fields (“MERRA-Land”) generated by rerunning a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ECMWF...


Journal of Hydrometeorology | 2002

Extended versus Ensemble Kalman Filtering for Land Data Assimilation

Rolf H. Reichle; Jeffrey P. Walker; Randal D. Koster; Paul R. Houser

Abstract The performance of the extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF) are assessed for soil moisture estimation. In a twin experiment for the southeastern United States synthetic observations of near-surface soil moisture are assimilated once every 3 days, neglecting horizontal error correlations and treating catchments independently. Both filters provide satisfactory estimates of soil moisture. The average actual estimation error in volumetric moisture content of the soil profile is 2.2% for the EKF and 2.2% (or 2.1%; or 2.0%) for the EnKF with 4 (or 10; or 500) ensemble members. Expected error covariances of both filters generally differ from actual estimation errors. Nevertheless, nonlinearities in soil processes are treated adequately by both filters. In the application presented herein the EKF and the EnKF with four ensemble members are equally accurate at comparable computational cost. Because of its flexibility and its performance in this study, the EnKF is a promising ...


Journal of Climate | 2017

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

Ronald Gelaro; Will McCarty; Max J. Suarez; Ricardo Todling; Andrea Molod; Lawrence L. Takacs; C. A. Randles; Anton Darmenov; Michael G. Bosilovich; Rolf H. Reichle; Krzysztof Wargan; L. Coy; Richard I. Cullather; C. Draper; Santha Akella; Virginie Buchard; Austin Conaty; Arlindo da Silva; Wei Gu; Gi-Kong Kim; Randal D. Koster; Robert Lucchesi; Dagmar Merkova; J. E. Nielsen; Gary Partyka; Steven Pawson; William M. Putman; Michele M. Rienecker; Siegfried D. Schubert; Meta Sienkiewicz

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASAs Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRAs terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).


Journal of Hydrometeorology | 2008

Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin

Benjamin F. Zaitchik; Matthew Rodell; Rolf H. Reichle

The NASA Gravity Recovery and Climate Experiment (GRACE) system of satellites provides observations of large-scale, monthly terrestrial water storage (TWS) changes. In. this presentation we describe a land data assimilation system that ingests GRACE observations and show that the assimilation improves estimates of water storage and fluxes, as evaluated against independent measurements. The ensemble-based land data assimilation system uses a Kalman smoother approach along with the NASA Catchment Land Surface Model (CLSM). We assimilated GRACE-derived TWS anomalies for each of the four major sub-basins of the Mississippi into the Catchment Land Surface Model (CLSM). Compared with the open-loop (no assimilation) CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with respect to measured groundwater. Assimilation also significantly increased the correlation between simulated TWS and gauged river flow for all four sub-basins and for the Mississippi River basin itself. In addition, model performance was evaluated for watersheds smaller than the scale of GRACE observations, in the majority of cases, GRACE assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data assimilation has considerable potential to downscale GRACE data for hydrological applications. We will also describe how the output from the GRACE land data assimilation system is now being prepared for use in the North American Drought Monitor.


Journal of Hydrometeorology | 2004

Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation

Rolf H. Reichle; Randal D. Koster; Jiarui Dong; Aaron A. Berg

Abstract Three independent surface soil moisture datasets for the period 1979–87 are compared: 1) global retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), 2) global soil moisture derived from observed meteorological forcing using the NASA Catchment Land Surface Model, and 3) ground-based measurements in Eurasia and North America from the Global Soil Moisture Data Bank. Time-average soil moisture fields from the satellite and the model largely agree in the global patterns of wet and dry regions. Moreover, the time series and anomaly time series of monthly mean satellite and model soil moisture are well correlated in the transition regions between wet and dry climates where land initialization may be important for seasonal climate prediction. However, the magnitudes of time-average soil moisture and soil moisture variability are markedly different between the datasets in many locations. Absolute soil moisture values from the satellite and the model are very different, and neither agrees...


Water Resources Research | 2001

Downscaling of radio brightness measurements for soil moisture estimation: A four‐dimensional variational data assimilation approach

Rolf H. Reichle; Dara Entekhabi; Dennis McLaughlin

This paper investigates the feasibility of estimating large-scale soil moisture profiles and related land surface variables from 1.4 GHz (L-band) passive microwave measurements, using variational data assimilation. Our four-dimensional assimilation algorithm takes into account both model and measurement uncertainties and provides dynamically consistent interpolation and extrapolation of remote sensing data over space and time. The land surface hydrologic model which forms the heart of the variational algorithm was expressly designed for data assimilation purposes. This model captures key physical processes while remaining computationally efficient. We test our algorithm with a series of synthetic experiments based on the Southern Great Plains 1997 Hydrology Experiment. These experiments provide insights about three issues that are crucial to the design of an operational soil moisture assimilation system. Our first synthetic experiment shows that soil moisture can be satisfactorily estimated at scales finer than the resolution of the brightness images. This downscaling experiment indicates that brightness images with a resolution of tens of kilometers can yield soil moisture profile estimates on a scale of a few kilometers, provided that micrometeorological, soil texture, and land cover inputs are available at the finer scale. In our second synthetic experiment we show that adequate soil moisture estimates can be obtained even if quantitative precipitation data are not available. Model error terms estimated from radio brightness measurements are able to account in an aggregate way for the effects of precipitation events. In our third experiment we show that reductions in estimation performance resulting from a decrease in the length of the assimilation time interval are offset by a substantial improvement in computational efficiency.

Collaboration


Dive into the Rolf H. Reichle's collaboration.

Top Co-Authors

Avatar

Randal D. Koster

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Q. Liu

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wade T. Crow

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

C. Draper

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Matthew Rodell

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Koster

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge