Rolf Nagel
Hoffmann-La Roche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rolf Nagel.
Clinical Chemistry and Laboratory Medicine | 2006
Gerhard Schumann; Ryoji Aoki; Ferrero Ca; Glenn Ehlers; Georges Férard; Gella Fj; Jørgensen Pj; Kanno T; Kessner A; Rainer Klauke; Hans Joachim Kytzia; Lessinger Jm; W.G. Miller; Rolf Nagel; Jean Pauwels; Heinz Schimmel; Lothar Siekmann; Gerhard Weidemann; Kiyoshi Yoshida; Ferruccio Ceriotti
Abstract This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37°C. The procedure described here is deduced from the previously described 30°C IFCC reference method. Differences are tabulated and commented on. Clin Chem Lab Med 2006;44:1146–55.This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 degrees C. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on.
Clinical Chemistry and Laboratory Medicine | 2006
Gerhard Schumann; Ryoji Aoki; Ferrero Ca; Glenn Ehlers; Georges Férard; Gella Fj; Jørgensen Pj; Kanno T; Kessner A; Rainer Klauke; Hans Joachim Kytzia; Lessinger Jm; W.G. Miller; Rolf Nagel; Jean Pauwels; Heinz Schimmel; Lothar Siekmann; Gerhard Weidemann; Kiyoshi Yoshida; Ferruccio Ceriotti
Abstract This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37°C. The procedure described here is deduced from the previously described 30°C IFCC reference method. Differences are tabulated and commented on. Clin Chem Lab Med 2006;44:1146–55.This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 degrees C. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on.
Clinical Chemistry and Laboratory Medicine | 2001
Gerhard Schumann; Hein C. Dominick; Dieter Hellmann; Rainer Klauke; Michael Möckesch; Herbert Stekel; Henning von Schenck; Manfred Kraft; Rolf Nagel; Edgar Hänseler
Abstract A new reagent carrier, Reflotron® ALP, has been developed for the Reflotron® system, allowing easy and rapid measurement (in less than 3 minutes) of alkaline phosphatase (ALP) activity in capillary blood, venous blood, heparinized plasma or serum. The evaluation of the analytical performance of the assay was carried out at eight clinical laboratories. The study of the imprecision using the measurements in human samples resulted in coefficients of variation ranging from 1.3% to 4.6% (within-run) and from 3.2% to 4.0% (day-to-day). The analytical specificity of the Reflotron® ALP assay agrees well with ALP methods using a N-methyl-D-glucamine buffer solution. The calibration of the Reflotron® ALP assay, however, is related to the reference intervals for ALP methods using a diethanolamine buffer solution. Method comparisons were performed with the ALP method on Hitachi instruments using diethanolamine buffer. Reflotron® ALP measurements in blood and plasma in 157 randomly selected split samples showed excellent agreement (slope: 0.99; intercept: 0.7 U/l; median bias: 2.3%; median difference from the comparison method: −0.3%). Specimens from pregnant women and adolescents were excluded from this study. Differing values were obtained in a method comparison using 48 samples containing predominantly the ALP bone isoform (slope: 0.81; intercept: 31.5 U/l; median bias: 5.7%; median difference from the comparison method: −12.2%). Regression analysis of the results from 21 sera with prevailing placental ALP gave a slope of 1.51, and an intercept of −41.1 U/l (median bias: 8.6%; median difference from the comparison method: 35.6%). Reflotron® ALP was compared with three different wet chemistry procedures using different buffer compounds: N-methyl-D-glucamine or diethanolamine or 2-amino-2-methyl-1-propanol. In samples containing predominantly ALP isoforms not of liver origin, the measurements with N-methyl-D-glucamine buffer gave the best fit with respect to Reflotron®. In an interference study with 18 drugs, no effect on the test results could be detected. Total bilirubin up to 750 μmol/l and hemolysis up to 1.7 g/l free hemoglobin did not influence the test. Reflotron® ALP proved to be an easy and rapid method with excellent precision. The accuracy related to an ALP method using diethanolamine buffer was good. The systematic differences for ALP in samples from pregnant women and adolescents have to be taken into account. The assay is well suited for differential diagnosis of hepatic diseases in decentralized testing.
Clinical Chemistry and Laboratory Medicine | 2006
Gerhard Schumann; Ryoji Aoki; Carlo A. Ferrero; Glenn Ehlers; Georges Férard; F.-Javier Gella; Jørgensen Pj; Takahashi Kanno; Kessner A; Rainer Klauke; Hans Joachim Kytzia; Lessinger Jm; W. Gregory Miller; Rolf Nagel; Jean Pauwels; Heinz Schimmel; Lothar Siekmann; Gerhard Weidemann; Kiyoshi Yoshida; Ferruccio Ceriotti
Abstract This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37°C. The procedure described here is deduced from the previously described 30°C IFCC reference method. Differences are tabulated and commented on. Clin Chem Lab Med 2006;44:1146–55.This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 degrees C. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on.
Archive | 2003
Rolf Nagel; Jürgen Mistele
Archive | 1997
Gregor Bainczyk; Rolf Nagel; Helmut Leininger; Rolf Lerch
Archive | 2012
Wolfgang Roedel; Carina Horn; Nelli Steinke; Nadine Bucci; Thomas Meier; Rainer Schmuck; Rolf Nagel; Dieter Heindl
Archive | 2010
Wolfgang Rödel; Carina Horn; Nelli Steinke; Nadine Bucci; Thomas Meier; Rainer Schmuck; Rolf Nagel; Dieter Heindl
Archive | 2006
Gerhard Schumann; Ryoji Aoki; A Carlo; Glenn Ehlers; Poul J. Jørgensen; Takahashi Kanno; Hans-Joachim Kytzia; W. Gregory Miller; Rolf Nagel; Jean Pauwels; Gerhard Weidemann; Ferruccio Ceriotti; Klinische Chemie; Medizinische Hochschule
Archive | 1997
Rolf Nagel; Steffen Bossert-Reuther; Thomas Zeibig