Rolf Riesinger
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rolf Riesinger.
Results in Mathematics | 2005
Dieter Betten; Rolf Riesinger
A parallelism of a projective 3-space Π is a family P of spreads such that each line of Π is contained in exactly one spread of P. A parallelism is said to be totally regular, if all its members are regular spreads. By a generalized line star with respect to an elliptic quadric Q of a classical projective 3-space we understand a set % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
Geometriae Dedicata | 1991
Rolf Riesinger
\cal A
Advances in Geometry | 2008
Dieter Betten; Rolf Riesinger
of 2-secants of Q such that each non-interior point of Q is incident with exactly one line of % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
Geometriae Dedicata | 1996
Rolf Riesinger
\cal A
Journal of Geometry | 1992
Rolf Riesinger
. From each generalized line star we can construct a totally regular parallelism which we do in essential by the Thas-Walker construction. A parallelisms of the real projective 3-space PG(3, ℝ) is called topological, if the operation of drawing a line parallel to a given line through a given point is continuous. Clifford parallelisms are topological. Using generalized line stars we exhibit examples of non-Clifford topological parallelisms and of non-topological parallelisms.
Journal of Geometry | 1997
Rolf Riesinger
AbstractA spread
Monatshefte für Mathematik | 1980
Rolf Riesinger
Results in Mathematics | 2004
Rolf Riesinger
\mathfrak{S}
Geometriae Dedicata | 1992
Rolf Riesinger
Archive | 2000
Dieter Betten; Rolf Riesinger
of a projective 3-space Π is said to be rigid (German: “starr”) if the only collineation of Π leaving