Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rolf Riesinger is active.

Publication


Featured researches published by Rolf Riesinger.


Results in Mathematics | 2005

Topological parallelisms of the real projective 3-space

Dieter Betten; Rolf Riesinger

A parallelism of a projective 3-space Π is a family P of spreads such that each line of Π is contained in exactly one spread of P. A parallelism is said to be totally regular, if all its members are regular spreads. By a generalized line star with respect to an elliptic quadric Q of a classical projective 3-space we understand a set % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Geometriae Dedicata | 1991

Beispiele starrer, topologischer Faserungen des reellen projektiven 3-Raums

Rolf Riesinger

\cal A


Advances in Geometry | 2008

Constructing topological parallelisms of PG(3, ℝ) via rotation of generalized line pencils

Dieter Betten; Rolf Riesinger

of 2-secants of Q such that each non-interior point of Q is incident with exactly one line of % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Geometriae Dedicata | 1996

Spreads Admitting Net Generating Regulizations

Rolf Riesinger

\cal A


Journal of Geometry | 1992

Faserungen, die Aus Reguli mit Einem Gemeinsamen Geradenpaar Zusammengesetzt Sind

Rolf Riesinger

. From each generalized line star we can construct a totally regular parallelism which we do in essential by the Thas-Walker construction. A parallelisms of the real projective 3-space PG(3, ℝ) is called topological, if the operation of drawing a line parallel to a given line through a given point is continuous. Clifford parallelisms are topological. Using generalized line stars we exhibit examples of non-Clifford topological parallelisms and of non-topological parallelisms.


Journal of Geometry | 1997

Spreads admitting elliptic regulizations

Rolf Riesinger

AbstractA spread


Monatshefte für Mathematik | 1980

Entartete Steinerkegelschnitte in nichtpapposschen Desarguesebenen

Rolf Riesinger


Results in Mathematics | 2004

Piecewise regular spreads

Rolf Riesinger

\mathfrak{S}


Geometriae Dedicata | 1992

Faserungen, die aus Reguli mit gemeinsamer Berührprojektivität längs einer gemeinsamen Erzeugenden zusammengesetzt sind

Rolf Riesinger


Archive | 2000

Discussing Knarr's 2-Surface of \(\mathbb{R}\)4 which Generates the First Single Shift Plane

Dieter Betten; Rolf Riesinger

of a projective 3-space Π is said to be rigid (German: “starr”) if the only collineation of Π leaving

Collaboration


Dive into the Rolf Riesinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Havlicek

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge