Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romain Fenouil is active.

Publication


Featured researches published by Romain Fenouil.


Nature Structural & Molecular Biology | 2012

Argonaute proteins couple chromatin silencing to alternative splicing

Maya Ameyar-Zazoua; Christophe Rachez; Mouloud Souidi; Philippe Robin; Lauriane Fritsch; Robert Young; Nadya Morozova; Romain Fenouil; Nicolas Descostes; Jean-Christophe Andrau; Jacques Mathieu; Ali Hamiche; Slimane Ait-Si-Ali; Christian Muchardt; Eric Batsché; Annick Harel-Bellan

Argonaute proteins play a major part in transcriptional gene silencing in many organisms, but their role in the nucleus of somatic mammalian cells remains elusive. Here, we have immunopurified human Argonaute-1 and Argonaute-2 (AGO1 and AGO2) chromatin-embedded proteins and found them associated with chromatin modifiers and, notably, with splicing factors. Using the CD44 gene as a model, we show that AGO1 and AGO2 facilitate spliceosome recruitment and modulate RNA polymerase II elongation rate, thereby affecting alternative splicing. Proper AGO1 and AGO2 recruitment to CD44 transcribed regions required the endonuclease Dicer and the chromobox protein HP1γ, and resulted in increased histone H3 lysine 9 methylation on variant exons. Our data thus uncover a new model for the regulation of alternative splicing, in which Argonaute proteins couple RNA polymerase II elongation to chromatin modification.


Nature Structural & Molecular Biology | 2011

Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters

Frederic Koch; Romain Fenouil; Marta Gut; Pierre Cauchy; Thomas K. Albert; Joaquin Zacarias-Cabeza; Salvatore Spicuglia; Albane Lamy De La Chapelle; Martin Heidemann; Corinna Hintermair; Dirk Eick; Ivo Gut; Pierre Ferrier; Jean-Christophe Andrau

Recent work has shown that RNA polymerase (Pol) II can be recruited to and transcribe distal regulatory regions. Here we analyzed transcription initiation and elongation through genome-wide localization of Pol II, general transcription factors (GTFs) and active chromatin in developing T cells. We show that Pol II and GTFs are recruited to known T cell–specific enhancers. We extend this observation to many new putative enhancers, a majority of which can be transcribed with or without polyadenylation. Importantly, we also identify genomic features called transcriptional initiation platforms (TIPs) that are characterized by large areas of Pol II and GTF recruitment at promoters, intergenic and intragenic regions. TIPs show variable widths (0.4–10 kb) and correlate with high CpG content and increased tissue specificity at promoters. Finally, we also report differential recruitment of TFIID and other GTFs at promoters and enhancers. Overall, we propose that TIPs represent important new regulatory hallmarks of the genome.


Nature Structural & Molecular Biology | 2011

Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36

Sérgio F. de Almeida; Ana Rita Grosso; Frederic Koch; Romain Fenouil; Sílvia Carvalho; Jorge Andrade; Helena Levezinho; Marta Gut; Dirk Eick; Ivo Gut; Jean-Christophe Andrau; Pierre Ferrier; Maria Carmo-Fonseca

Several lines of recent evidence support a role for chromatin in splicing regulation. Here, we show that splicing can also contribute to histone modification, which implies bidirectional communication between epigenetic mechanisms and RNA processing. Genome-wide analysis of histone methylation in human cell lines and mouse primary T cells reveals that intron-containing genes are preferentially marked with histone H3 Lys36 trimethylation (H3K36me3) relative to intronless genes. In intron-containing genes, H3K36me3 marking is proportional to transcriptional activity, whereas in intronless genes, H3K36me3 is always detected at much lower levels. Furthermore, splicing inhibition impairs recruitment of H3K36 methyltransferase HYPB (also known as Setd2) and reduces H3K36me3, whereas splicing activation has the opposite effect. Moreover, the increase of H3K36me3 correlates with the length of the first intron, consistent with the view that splicing enhances H3 methylation. We propose that splicing is mechanistically coupled to recruitment of HYPB/Setd2 to elongating RNA polymerase II.


Genome Research | 2012

CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters

Romain Fenouil; Pierre Cauchy; Frederic Koch; Nicolas Descostes; Joaquin Zacarias Cabeza; Charlène Innocenti; Pierre Ferrier; Salvatore Spicuglia; Marta Gut; Ivo Gut; Jean-Christophe Andrau

One clear hallmark of mammalian promoters is the presence of CpG islands (CGIs) at more than two-thirds of genes, whereas TATA boxes are only present at a minority of promoters. Using genome-wide approaches, we show that GC content and CGIs are major promoter elements in mammalian cells, able to govern open chromatin conformation and support paused transcription. First, we define three classes of promoters with distinct transcriptional directionality and pausing properties that correlate with their GC content. We further analyze the direct influence of GC content on nucleosome positioning and depletion and show that CpG content and CGI width correlate with nucleosome depletion both in vivo and in vitro. We also show that transcription is not essential for nucleosome exclusion but influences both a weak +1 and a well-positioned nucleosome at CGI borders. Altogether our data support the idea that CGIs have become an essential feature of promoter structure defining novel regulatory properties in mammals.


The EMBO Journal | 2012

Threonine‐4 of mammalian RNA polymerase II CTD is targeted by Polo‐like kinase 3 and required for transcriptional elongation

Corinna Hintermair; Martin Heidemann; Frederic Koch; Nicolas Descostes; Marta Gut; Ivo Gut; Romain Fenouil; Pierre Ferrier; Andrew Flatley; Elisabeth Kremmer; Rob D. Chapman; Jean-Christophe Andrau; Dirk Eick

Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1‐Ser2‐Pro3‐Thr4‐Ser5‐Pro6‐Ser7 at the carboxy‐terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5′ and 3′ regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo‐like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4‐P levels in the 3′ region of genes occurring subsequently to an increase of Ser2‐P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.


Science | 2016

Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

Erinn Soucie; Ziming Weng; Laufey Geirsdóttir; Kaaweh Molawi; Julien Maurizio; Romain Fenouil; Noushine Mossadegh-Keller; Gregory Gimenez; Meryam Beniazza; Jeremy Favret; Carole Berruyer; Pierre Perrin; Nir Hacohen; Jean-Christophe Andrau; Pierre Ferrier; Patrice Dubreuil; Arend Sidow; Michael H. Sieweke

Genetic programming for self-renewal Instead of repopulating themselves from tissue-resident stem cell pools like most types of differentiated cells, tissue macrophages maintain themselves by self-renewing. The underlying genetic programs that allow for this, however, are unknown. Soucie et al. now report that in macrophages at homeostasis, a pair of transcription factors (MafB and c-Maf) bind to and repress the enhancers of genes regulating self-renewal. When macrophages need to replenish their stocks, for example in response to injury, they transiently decrease MafB and c-Maf expression so they can self-renew. A parallel pathway also operates to control the self-renewal of embryonic stem cells. Science, this issue p. 10.1126/science.aad5510 Tissue macrophages and embryonic stem cells use similar genetic programs to self-renew. INTRODUCTION In many organs of the body, differentiated cells are frequently lost and need to be replaced as part of normal homeostatic tissue maintenance or in response to injury. In most cases, this regeneration is assured by differentiation from tissue-specific stem cells. Together with a few other cell types, tissue macrophages represent a rare exception to this pathway, as they can be maintained independently of blood stem cells by local proliferation. Under certain conditions, mature macrophages can also be expanded and maintained long term in culture without transformation or loss of differentiation status. The gene regulatory mechanisms that allow such differentiated cells to self-renew while maintaining cell type–specific identity have so far remained unknown. Self-renewing macrophages provide a rare opportunity to study this question. RATIONALE Molecularly, cell identity can be defined by the genomic positions of gene regulatory enhancer elements. The cell type–specific signatures and activity status of such elements have been characterized by the analysis of specific histone modifications and the binding of regulatory proteins. To identify the regulatory mechanisms that enable macrophage self-renewal capacity to be integrated into the overall program of epigenetic macrophage identity, we have compared the enhancer repertoires of quiescent and self-renewing macrophages. Based on our previous observations that deletion of MafB and c-Maf transcription factors results in an extended self-renewal capacity of macrophages, we further investigated how the absence of Maf transcription factors affects the enhancers of specific self-renewal genes and how these mechanisms activate macrophage self-renewal under homeostatic and challenge conditions in vivo. RESULTS Compared to quiescent macrophages, self-renewing macrophages showed no appreciable difference with respect to genome-wide enhancer positions but displayed an increase in the activation status of many enhancers that were also bound by the lineage-specifying transcription factor PU.1 in both cell types. This finding suggests that these poised macrophage-specific enhancers became active in self-renewing macrophages. We found activated enhancers to be associated with a network of genes, centered on Myc and Klf2, that were up-regulated and functionally important for self-renewal in these cells. The same genes were also required for embryonic stem (ES) cell self-renewal but were associated with a distinct, ES cell–specific set of enhancers. We observed that activated self-renewal–associated macrophage enhancers were directly repressed by MafB binding. The loss of MafB and c-Maf expression relieved this repression and led to activation of the self-renewal gene network in MafB and cMaf knockout macrophages, as well as in alveolar macrophages that express constitutively low levels of these transcription factors. In vivo single-cell analysis further revealed that, both in the steady state and in response to immune stimulation, proliferating resident macrophages could access this network by transient down-regulation of Maf transcription factors. CONCLUSION Our results demonstrate that self-renewal in macrophages involves down-regulation of MafB and cMaf, as well as concomitant activation of a self-renewal gene network shared with ES cells but controlled from cell type–specific enhancers. Macrophage enhancers associated with self-renewal genes are already present in quiescent cells and can become activated when direct repression by Maf transcription factors is relieved. Our findings provide a general molecular rationale for the compatibility of self-renewal and differentiated cell functions and may also be more generally relevant for the direct activation of self-renewal activity in other differentiated cell types with therapeutic potential. The self-renewal potential of both ES cells and differentiated macrophages is dependent on a shared network of self-renewal genes (left) that are controlled by distinct lineage-specific enhancers (right). In quiescent macrophages, the transcription factor MafB binds and represses these enhancers. The loss of MafB expression results in enhancer activation and enables macrophage self-renewal. At bottom left, red arrows indicate activation; blue bars represent inhibition. Circle size is a function of the number of times the target is affected by other regulators. MΦ, macrophage; E, enhancer; P, promoter. ILLUSTRATION: SERENA BIELLI Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell–specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells.


BMC Genomics | 2013

Divergent transcription is associated with promoters of transcriptional regulators

Cyrille Lepoivre; Mohamed Belhocine; Aurélie Bergon; Aurélien Griffon; Miriam Yammine; Joaquin Zacarias-Cabeza; Marc-Antoine Garibal; Frederic Koch; Muhammad Ahmad Maqbool; Romain Fenouil; Béatrice Loriod; Hélène Holota; Marta Gut; Ivo Gut; Jean Imbert; Jean-Christophe Andrau; Denis Puthier; Salvatore Spicuglia

BackgroundDivergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues.ResultsWe found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation.ConclusionsWe concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription.


Genome Research | 2015

The chromatin environment shapes DNA replication origin organization and defines origin classes

Christelle Cayrou; Benoit Ballester; Isabelle Peiffer; Romain Fenouil; Philippe Coulombe; Jean-Christophe Andrau; Jacques van Helden; Marcel Méchali

To unveil the still-elusive nature of metazoan replication origins, we identified them genome-wide and at unprecedented high-resolution in mouse ES cells. This allowed initiation sites (IS) and initiation zones (IZ) to be differentiated. We then characterized their genetic signatures and organization and integrated these data with 43 chromatin marks and factors. Our results reveal that replication origins can be grouped into three main classes with distinct organization, chromatin environment, and sequence motifs. Class 1 contains relatively isolated, low-efficiency origins that are poor in epigenetic marks and are enriched in an asymmetric AC repeat at the initiation site. Late origins are mainly found in this class. Class 2 origins are particularly rich in enhancer elements. Class 3 origins are the most efficient and are associated with open chromatin and polycomb protein-enriched regions. The presence of Origin G-rich Repeated elements (OGRE) potentially forming G-quadruplexes (G4) was confirmed at most origins. These coincide with nucleosome-depleted regions located upstream of the initiation sites, which are associated with a labile nucleosome containing H3K64ac. These data demonstrate that specific chromatin landscapes and combinations of specific signatures regulate origin localization. They explain the frequently observed links between DNA replication and transcription. They also emphasize the plasticity of metazoan replication origins and suggest that in multicellular eukaryotes, the combination of distinct genetic features and chromatin configurations act in synergy to define and adapt the origin profile.


Science | 2016

Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation

Alex Rialdi; Laura Campisi; Nan Zhao; Arvin Lagda; Colette Pietzsch; Jessica Sook Yuin Ho; Luis Martinez-Gil; Romain Fenouil; Xiaoting Chen; Megan R. Edwards; Giorgi Metreveli; Stefan Jordan; Zuleyma Peralta; César Muñoz-Fontela; Nicole M. Bouvier; Miriam Merad; Jian Jin; Matthew T. Weirauch; Sven Heinz; Christopher Benner; Harm van Bakel; Christopher F. Basler; Adolfo García-Sastre; Alexander Bukreyev; Ivan Marazzi

Unwinding DNA and unleasing inflammation Fighting infections often comes with collateral damage, which sometimes can be deadly. For instance, in septic shock, the overwhelming release of inflammatory mediators drives multi-organ failure. Rialdi et al. now report a potential new therapeutic target for controlling excessive inflammation: the DNA unwinding enzyme topoisomerase I (Top1) (see the Perspective by Pope and Medzhitov). Upon infection, Top1 specifically localizes to the promoters of pathogen-induced genes and promotes their transcription by helping to recruit RNA polymerase II. Pharmacological inhibition of Top1 in a therapeutic setting increased survival in several mouse models of severe microbially induced inflammation. Science, this issue p. 10.1126/science.aad7993; see also p. 1058 Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses, as well as bacterial products. INTRODUCTION Infection causes inflammation, which contributes to pathogen clearance and organismal survival. The balance between the intensity and resolution of an inflammatory response is key for the fitness of the organism. Sepsis, for example, is a life-threatening condition caused by an excessive host response to infection, which in turn leads to multi-organ failure and death. Worldwide, millions of people each year succumb to sepsis. With an overall mortality rate of 20 to 50%, sepsis is the 10th leading cause of death (more than HIV and breast cancer) in the United States, according to the Centers for Disease Control and Prevention. Estimates indicate that 250,000 to 500,000 people die from sepsis annually in the United States. Children and the elderly are especially vulnerable to sepsis; it is the most common cause of death in infants and children. Childhood pneumonia, often caused by virus-bacteria co-infection, leads to septic shock and lung destruction. This occurs after bacterial invasion even in the presence of an appropriate antibiotic therapy. Finding remedies to treat sepsis and diseases associated with detrimental acute inflammatory reactions is thus pivotal for humankind. RATIONALE We reasoned that if excessive inflammation in response to infection leads to lethal consequences, dampening inflammation could be advantageous for the host. At least two strategies could be used to suppress inflammatory responses associated with infection. One is indirect and targets the pathogen (antibiotics). The second one, which we used, directly acts on the host response itself. In such a strategy, the suppression of acute inflammation would bypass the fatal outcome associated with overt inflammation and would “buy time” to allow the host immune response to eliminate the pathogen. After microbial invasion, many steps could be targeted between the early phases of the cellular response (sensing of the pathogen and signal transduction) and the information flow from DNA to RNA to proteins that act as inflammatory mediators (i.e., cytokines). We decided to identify and chemically inhibit cellular factors that act at the DNA (chromatin) level and play a primary role in activating the expression of inflammatory genes. RESULTS We found that chemical inhibition of topoisomerase 1 (Top1), an enzyme that unwinds DNA, suppresses the expression of infection-induced genes with little to no effect on housekeeping gene expression and without cellular damage. In vitro, depletion or chemical inhibition of Top1 in epithelial cells and macrophages suppresses the host response against influenza and Ebola viruses as well as bacterial products. At the mechanistic level, as shown by chemical genetics and epigenetic approaches, Top1 inhibition primarily suppresses RNA polymerase II (RNAPII) activity at pathogen-associated molecular pattern (PAMP)–induced genes. These genes require SWI/SNF chromatin remodeling for activation and display unique genetic and epigenetic features, such as the presence of IRF3 binding sites, low basal levels of RNAPII, histone H3 Lys27 acetylation marks, DNA hypersensitivity, and CpG islands. This gene “signature” of specificity was also validated using public data sets. In vivo, Top1 inhibition therapy rescued 70 to 90% mortality caused by exacerbated inflammation in three mouse models: acute bacteria infection, liver failure, and virus-bacteria co-infection. Strikingly, one to three doses of inhibitors were sufficient for the protective effect in all models, without overt side effects. CONCLUSION The inflammatory immune response against microbes is essential in protecting us against infections. In some cases, such as highly pathogenic and pandemic infections, the organism turns against itself and responds too acutely, with an excessive inflammation that can have fatal consequences. Our results suggest that a therapy based on Top1 inhibition could save millions of people affected by sepsis, pandemics, and many congenital deficiencies associated with acute inflammatory episodes and “cytokine storms.” CREDIT: RYGER/SHUTTERSTOCK The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response.


eLife | 2014

Tyrosine phosphorylation of RNA Polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells

Nicolas Descostes; Martin Heidemann; Lionel Spinelli; Roland Schüller; Muhammad Ahmad Maqbool; Romain Fenouil; Frederic Koch; Charlène Innocenti; Marta Gut; Ivo Gut; Dirk Eick; Jean-Christophe Andrau

In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5′ associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability. DOI: http://dx.doi.org/10.7554/eLife.02105.001

Collaboration


Dive into the Romain Fenouil's collaboration.

Top Co-Authors

Avatar

Jean-Christophe Andrau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Gut

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Pierre Ferrier

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Ivo Gut

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Cauchy

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muhammad Ahmad Maqbool

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge