Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roman I. Koning is active.

Publication


Featured researches published by Roman I. Koning.


Science | 2014

Complement Is Activated by IgG Hexamers Assembled at the Cell Surface

C.A. Diebolder; Frank J. Beurskens; Rob N. de Jong; Roman I. Koning; Kristin Strumane; Margaret A. Lindorfer; Marleen Voorhorst; Deniz Ugurlar; Sara Rosati; Albert J. R. Heck; Jan G. J. van de Winkel; Ian A. Wilson; Abraham J. Koster; Ronald P. Taylor; Erica Ollmann Saphire; Dennis R. Burton; Janine Schuurman; Piet Gros; Paul Parren

Hexing Complement Complement activation is an immediate and potent immune defense mechanism, but how immunoglobulin G (IgG) antibodies activate complement at the molecular level is poorly understood. Using high-resolution crystallography, Diebolder et al. (p. 1260) show that human IgGs form hexameric structures by interacting with neighboring IgG molecules, and the complex then activates complement. Thus, IgG molecules and the complement system can coexist in the blood because complement activation will only be triggered after IgG senses a surface antigen and starts to aggregate. Hexameric platforms of antibodies on the cell surface trigger the complement cascade. Complement activation by antibodies bound to pathogens, tumors, and self antigens is a critical feature of natural immune defense, a number of disease processes, and immunotherapies. How antibodies activate the complement cascade, however, is poorly understood. We found that specific noncovalent interactions between Fc segments of immunoglobulin G (IgG) antibodies resulted in the formation of ordered antibody hexamers after antigen binding on cells. These hexamers recruited and activated C1, the first component of complement, thereby triggering the complement cascade. The interactions between neighboring Fc segments could be manipulated to block, reconstitute, and enhance complement activation and killing of target cells, using all four human IgG subclasses. We offer a general model for understanding antibody-mediated complement activation and the design of antibody therapeutics with enhanced efficacy.


Journal of the American Chemical Society | 2009

Shape and release control of a peptide decorated vesicle through pH sensitive orthogonal supramolecular interactions.

Frank Versluis; Itsuro Tomatsu; Seda Kehr; Carlo Fregonese; Armand W. J. W. Tepper; Marc C. A. Stuart; Bart Jan Ravoo; Roman I. Koning; Alexander Kros

A pH sensitive carrier is obtained by coating a cyclodextrin vesicle with an adamantane-terminated octapeptide through the formation of an inclusion complex. Upon lowering the pH from 7.4 to 5.0, the formation of peptide beta-sheets on the vesicle surface induces a transition of the bilayer from a sphere to a fiber. This transition is fully reversible and repeatable. The vesicles release their cargo upon fiber formation.


Nature | 2006

Structure of the E. coli signal recognition particle bound to a translating ribosome

Christiane Schaffitzel; Miro Oswald; Imre Berger; Takashi Ishikawa; Jan Pieter Abrahams; Henk K. Koerten; Roman I. Koning; Nenad Ban

The prokaryotic signal recognition particle (SRP) targets membrane proteins into the inner membrane. It binds translating ribosomes and screens the emerging nascent chain for a hydrophobic signal sequence, such as the transmembrane helix of inner membrane proteins. If such a sequence emerges, the SRP binds tightly, allowing the SRP receptor to lock on. This assembly delivers the ribosome-nascent chain complex to the protein translocation machinery in the membrane. Using cryo-electron microscopy and single-particle reconstruction, we obtained a 16 Å structure of the Escherichia coli SRP in complex with a translating E. coli ribosome containing a nascent chain with a transmembrane helix anchor. We also obtained structural information on the SRP bound to an empty E. coli ribosome. The latter might share characteristics with a scanning SRP complex, whereas the former represents the next step: the targeting complex ready for receptor binding. High-resolution structures of the bacterial ribosome and of the bacterial SRP components are available, and their fitting explains our electron microscopic density. The structures reveal the regions that are involved in complex formation, provide insight into the conformation of the SRP on the ribosome and indicate the conformational changes that accompany high-affinity SRP binding to ribosome nascent chain complexes upon recognition of the signal sequence.


European Journal of Cell Biology | 2009

Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells

Linda F. van Driel; Jack A. Valentijn; Karine M. Valentijn; Roman I. Koning; Abraham J. Koster

Cryo-electron tomography (cryo-ET) allows for the visualization of biological material in a close-to-native state, in three dimensions and with nanometer scale resolution. However, due to the low signal-to-noise ratio inherent to imaging of the radiation-sensitive frozen-hydrated samples, it appears often times impossible to localize structures within heterogeneous samples. Because a major potential for cryo-ET is thereby left unused, we set out to combine cryo-ET with cryo-fluorescence microscopy (cryo-FM), in order to facilitate the search for structures of interest. We describe a cryo-FM setup and workflow for correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) that can be easily implemented. Cells are grown on finder grids, vitally labeled with one or two fluorescent dyes, and vitrified. After a structure is located by cryo-FM (with 0.4microm resolution), its image coordinates are translated to cryo-ET stage coordinates via a home-built software routine. We tested our workflow on whole mount primary human umbilical vein endothelial cells. The correlative routine enabled us to investigate mitochondrial ultrastructure for the first time on intact human mitochondria, and led us to find mitochondrial cristae that were connected to the intermembrane space via large slits, which challenges the current view that such connections are established exclusively via small circular pores. Taken together, this study emphasizes that cryo-CLEM can be a routinely used technique that opens up exciting new possibilities for cryo-ET.


Annals of Anatomy-anatomischer Anzeiger | 2009

Cryo-electron tomography in biology and medicine

Roman I. Koning; Abraham J. Koster

During the last six decades electron microscopy (EM) has been essential to ultra-structural studies of the cell to understand the fundamentals of cellular morphology and processes underlying diseases. More recently, electron tomography (ET) has emerged as a novel approach able to provide three-dimensional (3D) information on cells and tissues at molecular level. Electron tomography is comparable to medical tomographic techniques like CAT, PET and MRI in the sense that it provides a 3D view of an object, yet it does so at a cellular scale and with nanometer resolution. Electron tomography has the unique ability to visualize molecular assemblies, cytoskeletal elements and organelles within cells. The three-dimensional perspective it provides has revised our understanding of cellular organization and its relation with morphological changes in normal development and disease. Cryo-electron tomography of vitrified samples at cryogenic temperatures combines excellent structural preservation with direct high-resolution imaging. The use of cryo-preparation and imaging techniques eliminates artifacts induced by plastic embedding and staining of the samples is circumvented. This review describes the technique of cryo-electron tomography, its basic principles, cryo-specimen preparation, tomographic data acquisition and image processing. A number of illustrative examples ranging from whole cells, cytoskeletal filaments, viruses and organelles are presented along with a comprehensive list of research articles employing cryo-electron tomography as the key ultrastuctural technique.


Research in Microbiology | 2009

CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606T to human airway epithelial cells and their inflammatory response

Anna de Breij; Jennifer A. Gaddy; Joke van der Meer; Roman I. Koning; Abraham J. Koster; Peterhans J. van den Broek; Luis A. Actis; Peter H. Nibbering; Lenie Dijkshoorn

Acinetobacter baumannii is a nosocomial pathogen responsible for outbreaks of infection worldwide. The factors associated with its ability to colonize/infect human hosts are largely unknown. Adherence to host cells is the first step in colonization/infection, which can be followed by biofilm formation. A. baumannii ATCC19606(T) biofilm formation on abiotic surfaces depends on expression of the CsuA/BABCDE chaperonee-usher pili assembly system. The present study focused on the involvement of CsuA/BABCDE-dependent pili in the interactions between A. baumannii 19606(T) and human bronchial epithelial cells and sheep erythrocytes. Light microscopy analysis revealed that CsuE-mutant #144 adhered to more bronchial epithelial cells than the parental strain. Similar amounts of interleukin (IL)-6 and IL-8 were produced by bronchial epithelial cells in response to these two bacterial strains. Scanning electron microscopy revealed the presence of two types of surface extensions on ATCC19606(T), i.e., short (29 nm; 5-140 nm) pili and long (260 nm; 143-1008 nm) extensions. The latter were not observed on the CsuE-mutant and therefore are likely the previously described CsuA/BABCDE-encoded extensions. We conclude that CsuA/BABCDE-dependent pili are not involved in adherence of A. baumannii ATCC19606(T) to bronchial epithelial cells. The structure of the short pili and their possible role in adherence to human cells requires further investigation.


Journal of extracellular vesicles | 2013

Cryo-electron microscopy of extracellular vesicles in fresh plasma

Yuana Yuana; Roman I. Koning; Maxim E. Kuil; Patrick C. N. Rensen; Abraham J. Koster; Rogier M. Bertina; Susanne Osanto

Introduction Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. Objectives To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM). Methods Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. Results EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25–260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules. Conclusions Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.


The EMBO Journal | 2009

Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex.

Bert J. C. Janssen; Lucio Gomes; Roman I. Koning; Dmitri I. Svergun; Abraham J. Koster; David C. Fritzinger; Carl-Wilhelm Vogel; Piet Gros

Immune protection by the complement system critically depends on assembly of C3 convertases on the surface of pathogens and altered host cells. These short‐lived protease complexes are formed through pro‐convertases, which for the alternative pathway consist of the complement component C3b and the pro‐enzyme factor B (FB). Here, we present the crystal structure at 2.2‐Å resolution, small‐angle X‐ray scattering and electron microscopy (EM) data of the pro‐convertase formed by human FB and cobra venom factor (CVF), a potent homologue of C3b that generates more stable convertases. FB is loaded onto CVF through its pro‐peptide Ba segment by specific contacts, which explain the specificity for the homologous C3b over the native C3 and inactive products iC3b and C3c. The protease segment Bb binds the carboxy terminus of CVF through the metal‐ion dependent adhesion site of the Von Willebrand factor A‐type domain. A possible dynamic equilibrium between a ‘loading’ and ‘activation’ state of the pro‐convertase may explain the observed difference between the crystal structure of CVFB and the EM structure of C3bB. These insights into formation of convertases provide a basis for further development of complement therapeutics.


Journal of Molecular Biology | 2003

Visualization by Cryo-electron Microscopy of Genomic RNA that Binds to the Protein Capsid Inside Bacteriophage MS2

Roman I. Koning; Sjoerd H. E. van den Worm; Jasper R. Plaisier; Jan van Duin; Jan Pieter Abrahams; Henk K. Koerten

The icosahedrally symmetrized structure of bacteriophage MS2 as determined by cryo-electron microscopy (EM) reveals the presence of genomic RNA that attaches to coat-protein dimers. Earlier X-ray diffraction studies revealed similar interactions between the unique operator hairpin of the MS2 genomic RNA and the coat-protein dimer. This observation leads us to conclude that not only the operator, but also many other RNA sequences in the genome of MS2, are able to bind to the coat-protein dimer. A substantial number of potential coat-protein-dimer binding sites are present in the genome of MS2 that can account for the observed RNA densities in the EM map. Moreover, it appears that these stem-loop structures are able to bind in a similar fashion to the coat protein dimer as the wild-type operator hairpin. The EM map also shows additional density between the potential operator-binding sites, linking the RNA stem-loops together to form an icosahedral network around the 3 and 5-fold axes. This RNA network is bound to the inside of the MS2 capsid and probably influences both capsid stability and formation, supporting the idea that capsid formation and RNA packaging are intimately linked to each other.


Journal of Structural Biology | 2013

Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy

Frank G.A. Faas; Montserrat Bárcena; Alexandra V. Agronskaia; Hans C. Gerritsen; K.B. Moscicka; C.A. Diebolder; Lf van Driel; Ronald W. A. L. Limpens; Erik Bos; Raimond B. G. Ravelli; Roman I. Koning; Abraham J. Koster

Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells.

Collaboration


Dive into the Roman I. Koning's collaboration.

Top Co-Authors

Avatar

Abraham J. Koster

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Henk K. Koerten

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna de Breij

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Erik Bos

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge