Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roman Scoccimarro is active.

Publication


Featured researches published by Roman Scoccimarro.


The Astrophysical Journal | 2005

DETECTION OF THE BARYON ACOUSTIC PEAK IN THE LARGE-SCALE CORRELATION FUNCTION OF SDSS LUMINOUS RED GALAXIES

Daniel J. Eisenstein; Idit Zehavi; David W. Hogg; Roman Scoccimarro; Michael R. Blanton; Robert C. Nichol; Ryan Scranton; Hee-Jong Seo; Max Tegmark; Zheng Zheng; Scott F. Anderson; James Annis; Neta A. Bahcall; J. Brinkmann; Scott Burles; Francisco J. Castander; A. Connolly; István Csabai; Mamoru Doi; Masataka Fukugita; Joshua A. Frieman; Karl Glazebrook; James E. Gunn; Johnn Hendry; Gregory S. Hennessy; Zeljko Ivezic; Stephen M. Kent; Gillian R. Knapp; Huan Lin; Yeong Shang Loh

We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72h −3 Gpc 3 over 3816 square degrees and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h −1 Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density mh 2 to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find m = 0.273 ±0.025+0.123(1+ w0)+0.137K. Including the CMB acoustic scale, we find that the spatial curvature is K = −0.010 ± 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties. Subject headings: cosmology: observations — large-scale structure of the universe — distance scale — cosmological parameters — cosmic microwave background — galaxies: elliptical and lenticular, cD


The Astrophysical Journal | 2004

The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey

Max Tegmark; Michael R. Blanton; Michael A. Strauss; Fiona Hoyle; David J. Schlegel; Roman Scoccimarro; Michael S. Vogeley; David H. Weinberg; Idit Zehavi; Andreas A. Berlind; Tamas Budavari; A. Connolly; Daniel J. Eisenstein; Douglas P. Finkbeiner; Joshua A. Frieman; James E. Gunn; A. Hamilton; Lam Hui; Bhuvnesh Jain; David E. Johnston; S. Kent; Huan Lin; Reiko Nakajima; Robert C. Nichol; Jeremiah P. Ostriker; Adrian Pope; Ryan Scranton; Uros Seljak; Ravi K. Sheth; Albert Stebbins

We measure the large-scale real-space power spectrum P(k) using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 square degrees with mean redshift z~0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h/Mpc < k < 0.3h/Mpc. We pay particular attention to modeling, quantifying and correcting for potential systematic errors, nonlinear redshift distortions and the artificial red-tilt caused by luminosity-dependent bias. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k<0.1h/Mpc, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the WMAP satellite. As a simple characterization of the data, our measurements are well fit by a flat scale-invariant adiabatic cosmological model with h Omega_m =0.201+/- 0.017 and L* galaxy sigma_8=0.89 +/- 0.02 when fixing the baryon fraction Omega_b/Omega_m=0.17 and the Hubble parameter h=0.72; cosmological interpretation is given in a companion paper.We measure the large-scale real-space power spectrum P(k) by using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 effective square degrees with mean redshift z ≈ 0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h Mpc-1 < k < 0.3 h Mpc-1. We pay particular attention to modeling, quantifying, and correcting for potential systematic errors, nonlinear redshift distortions, and the artificial red-tilt caused by luminosity-dependent bias. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k < 0.1 h Mpc-1, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the Wilkinson Microwave Anisotropy Probe satellite. The power spectrum is not well-characterized by a single power law but unambiguously shows curvature. As a simple characterization of the data, our measurements are well fitted by a flat scale-invariant adiabatic cosmological model with h Ωm = 0.213 ± 0.023 and σ8 = 0.89 ± 0.02 for L* galaxies, when fixing the baryon fraction Ωb/Ωm = 0.17 and the Hubble parameter h = 0.72; cosmological interpretation is given in a companion paper.


Physical Review D | 2006

Cosmological constraints from the SDSS luminous red galaxies

Max Tegmark; Daniel J. Eisenstein; Michael A. Strauss; David H. Weinberg; Michael R. Blanton; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; A. Hamilton; Gillian R. Knapp; Robert C. Nichol; Jeremiah P. Ostriker; Nikhil Padmanabhan; Will J. Percival; David J. Schlegel; Donald P. Schneider; Roman Scoccimarro; Uros Seljak; Hee-Jong Seo; M. E. C. Swanson; Alexander S. Szalay; Michael S. Vogeley; Jaiyul Yoo; Idit Zehavi; Kevork N. Abazajian; Scott F. Anderson; James Annis; Neta A. Bahcall; Bruce A. Bassett; Andreas A. Berlind

We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.


Physics Reports | 2002

Large-scale structure of the Universe and cosmological perturbation theory

F. Bernardeau; S. Colombi; E. Gaztanaga; Roman Scoccimarro

Abstract We review the formalism and applications of non-linear perturbation theory (PT) to understanding the large-scale structure of the Universe. We first discuss the dynamics of gravitational instability, from the linear to the non-linear regime. This includes Eulerian and Lagrangian PT, non-linear approximations, and a brief description of numerical simulation techniques. We then cover the basic statistical tools used in cosmology to describe cosmic fields, such as correlation functions in real and Fourier space, probability distribution functions, cumulants and generating functions. In subsequent sections we review the use of PT to make quantitative predictions about these statistics according to initial conditions, including effects of possible non-Gaussianity of the primordial fields. Results are illustrated by detailed comparisons of PT predictions with numerical simulations. The last sections deal with applications to observations. First, we review in detail practical estimators of statistics in galaxy catalogs and related errors, including traditional approaches and more recent developments. Then, we consider the effects of the bias between the galaxy distribution and the matter distribution, the treatment of redshift distortions in three-dimensional surveys and of projection effects in angular catalogs, and some applications to weak gravitational lensing. We finally review the current observational situation regarding statistics in galaxy catalogs and what the future generation of galaxy surveys promises to deliver.


The Astrophysical Journal | 2005

THE LUMINOSITY AND COLOR DEPENDENCE OF THE GALAXY CORRELATION FUNCTION

Idit Zehavi; Zheng Zheng; David H. Weinberg; Joshua A. Frieman; Andreas A. Berlind; Michael R. Blanton; Roman Scoccimarro; Ravi K. Sheth; Michael A. Strauss; Issha Kayo; Yasushi Suto; Masataka Fukugita; Osamu Nakamura; Neta A. Bahcall; J. Brinkmann; James E. Gunn; Greg Hennessy; Željko Ivezić; Gillian R. Knapp; Jon Loveday; Avery Meiksin; David J. Schlegel; Donald P. Schneider; István Szapudi; Max Tegmark; Michael S. Vogeley; Donald G. York

Westudytheluminosityandcolordependenceofthegalaxytwo-pointcorrelationfunctionintheSloanDigitalSky Survey, starting from a sample of � 200,000 galaxies over 2500 deg 2 . We concentrate our analysis on volume-limited subsamples of specified luminosity ranges, for which we measure the projected correlation function wp(rp), which is directly related to the real-space correlation function � (r). The amplitude of wp(rp) rises continuously with luminosity from Mr �� 17: 5t oMr �� 22:5, with the most rapid increase occurring above the characteristic luminosity L� (Mr �� 20:5). Over the scales 0:1 h � 1 Mpc � 22 can be approximated, imperfectly, by power-law three-dimensional correlation functions � (r) ¼ (r/r0) � � with � � 1:8 and r0(L� ) � 5:0 h � 1 Mpc. The brightest subsample, � 23 < Mr < � 22, has a significantly steeper � (r). When we divide samples by color, redder galaxies exhibit a higher amplitude and steeper correlation function at all luminosities. The correlation amplitude of blue galaxies increases continuously with luminosity, but the luminosity dependence for red galaxies is less regular, with bright red galaxies exhibiting the strongest clustering at large scales and faint red galaxies exhibiting the strongest clustering at small scales. We interpret these results using halo occupation distribution (HOD) models assuming concordance cosmological parameters. For most samples, an HOD model with two adjustable parameters fits the wp(rp) data better than a power law, explaining inflections at rp � 1 3 h � 1 Mpc as the transition between the one-halo and two-halo regimes of � (r). The implied minimum mass for a halo hosting a central galaxy more luminous than L grows steadily, with Mmin / L at low luminosities and a steeper dependence above L� . The mass at which a halo has, on average, one satellite galaxy brighter than L is M1 � 23Mmin(L), at all luminosities. These results imply a conditional luminosity function (at fixed halo mass) in which central galaxies lie far above a Schechter function extrapolation of the satellite population. The HOD model fits nicely explain the color dependence of wp(rp) and the cross correlation between red and blue galaxies. For galaxies with Mr < � 21, halos slightly above Mmin have blue central galaxies, while more massive halos have red central galaxies and predominantly red satellite populations. The fraction of blue central galaxies increases steadily with decreasing luminosity and host halo mass. The strong clustering offaint red galaxies follows from the fact that nearly all of them are satellite systems in high-mass halos. The HOD fitting results are in good qualitative agreement with the predictions of numerical and semianalytic models of galaxy formation. Subject headingg cosmology: observations — cosmology: theory — galaxies: distances and redshifts — galaxies: halos — galaxies: statistics — large-scale structure of universe


The Astrophysical Journal | 2002

Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

Idit Zehavi; Michael R. Blanton; Joshua A. Frieman; David H. Weinberg; Hounjun J. Mo; Michael A. Strauss; Scott F. Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; John W. Briggs; J. Brinkmann; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Julianne J. Dalcanton; Scott Dodelson; Mamoru Doi; Daniel J. Eisenstein; Michael L. Evans; Douglas P. Finkbeiner; Scott D. Friedman; Masataka Fukugita; James E. Gunn; Greg Hennessy; Robert B. Hindsley; Željko Ivezić; Stephen B. H. Kent

We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700 km s-1 ≤ cz ≤ 39,000 km s-1, distributed in several long but narrow (25-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, fingers-of-God distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r) = (r/6.1 ± 0.2 h-1 Mpc)-1.75±0.03, for 0.1 h-1 Mpc ≤ r ≤ 16 h-1 Mpc. The galaxy pairwise velocity dispersion is σ12 ≈ 600 ± 100 km s-1 for projected separations 0.15 h-1 Mpc ≤ rp ≤ 5 h-1 Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r 10 h-1 Mpc: subsamples with absolute magnitude ranges centered on M* - 1.5, M*, and M* + 1.5 have real-space correlation functions that are parallel power laws of slope ≈-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.


The Astrophysical Journal | 2001

How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering

Roman Scoccimarro; Ravi K. Sheth; Lam Hui; Bhuvnesh Jain

We study galaxy clustering in the framework of halo models, where gravitational clustering is described in terms of dark matter halos. At small scales, dark matter clustering statistics are dominated by halo density profiles, whereas at large scales, correlations are the result of combining nonlinear perturbation theory with halo biasing. Galaxies are assumed to follow the dark matter profiles of the halo they inhabit, and galaxy formation efficiency is characterized by the number of galaxies that populate a halo of given mass. This approach leads to generic predictions: the galaxy power spectrum shows a power-law behavior even though the dark matter does not, and the galaxy higher order correlations show smaller amplitudes at small scales than their dark matter counterparts. Both are in qualitatively agreement with measurements in galaxy catalogs. We find that requiring the model to fit both the second- and third-order moments of the Automatic Plate Measuring Facility (APM) galaxies provides a strong constraint on galaxy formation models. The data at large scales require that galaxy formation be relatively efficient at small masses, m ≈ 1010 M☉ h-1, whereas data at smaller scales require that the number of galaxies in a halo scale approximately as the mass to the 0.8th power in the high-mass limit. These constraints are independent of those derived from the luminosity function or Tully-Fisher relation. We also predict the power spectrum, bispectrum, and higher order moments of the mass density field in this framework. Although halo models agree well with measurements of the mass power spectrum and the higher order Sp parameters in N-body simulations, the model assumption that halos are spherical leads to disagreement in the configuration dependence of the bispectrum at small scales. We stress the importance of finite-volume effects in higher order statistics and show how they can be estimated in this approach.


Physical Review D | 2006

Renormalized cosmological perturbation theory

Martin Crocce; Roman Scoccimarro

We develop a new formalism to study nonlinear evolution in the growth of large-scale structure, by following the dynamics of gravitational clustering as it builds up in time. This approach is conveniently represented by Feynman diagrams constructed in terms of three objects: the initial conditions (e.g. perturbation spectrum), the vertex (describing nonlinearities) and the propagator (describing linear evolution). We show that loop corrections to the linear power spectrum organize themselves into two classes of diagrams: one corresponding to mode-coupling effects, the other to a renormalization of the propagator. Resummation of the latter gives rise to a quantity that measures the memory of perturbations to initial conditions as a function of scale. As a result of this, we show that a well-defined (renormalized) perturbation theory follows, in the sense that each term in the remaining mode-coupling series dominates at some characteristic scale and is subdominant otherwise. This is unlike standard perturbation theory, where different loop corrections can become of the same magnitude in the nonlinear regime. In companion papers we compare the resummation of the propagator with numerical simulations, and apply these results to the calculation of the nonlinear power spectrum. Remarkably, the expressions in renormalized perturbation theory can be written in a way that closely resembles the halo model.


The Astrophysical Journal | 2004

On departures from a power law in the galaxy correlation function

Idit Zehavi; David H. Weinberg; Zheng Zheng; Andreas A. Berlind; Joshua A. Frieman; Roman Scoccimarro; Ravi K. Sheth; Michael R. Blanton; Max Tegmark; H. J. Mo; Neta A. Bahcall; J. Brinkmann; Scott Burles; István Csabai; Masataka Fukugita; James E. Gunn; D. Q. Lamb; Jon Loveday; Robert H. Lupton; Avery Meiksin; Jeffrey A. Munn; Robert C. Nichol; David J. Schlegel; Donald P. Schneider; Mark SubbaRao; Alexander S. Szalay; Alan Uomoto; Donald G. York

We measure the projected correlation function wp from the Sloan Digital Sky Survey for a flux-limited sample of 118,000 galaxies and a volume-limited subset of 22,000 galaxies with absolute magnitude Mr M1 = 4.74 ? 1013 h-1 M? is M = 0.89, with 75% of the galaxies residing in less massive, single-galaxy halos and simple auxiliary assumptions about the spatial distribution of galaxies within halos and the fluctuations about the mean occupation. This physically motivated model has the same number of free parameters as a power law, and it fits the wp data better, with a ?2/dof = 0.93, compared to 6.12 (for 10 degrees of freedom, incorporating the covariance of the correlation function errors). Departures from a power-law correlation function encode information about the relation between galaxies and dark matter halos. Higher precision measurements of these departures for multiple classes of galaxies will constrain galaxy bias and provide new tests of the theory of galaxy formation.


Astrophysical Journal Supplement Series | 2006

Percolation Galaxy Groups and Clusters in the SDSS Redshift Survey: Identification, Catalogs, and the Multiplicity Function

Andreas A. Berlind; Joshua A. Frieman; David H. Weinberg; Michael R. Blanton; Michael S. Warren; Kevork N. Abazajian; Ryan Scranton; David W. Hogg; Roman Scoccimarro; Neta A. Bahcall; J. Brinkmann; J. Richard Gott; S. J. Kleinman; Jurek Krzesinski; Brian Charles Lee; Christopher J. Miller; Atsuko Nitta; Donald P. Schneider; Douglas L. Tucker; Idit Zehavi

We identify galaxy groups and clusters in volume-limited samples of the Sloan Digital Sky Survey (SDSS) redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with 10 or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than ~1%; a halo completeness of more than ~97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is ~20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 deg2 on the sky, go out to redshifts of 0.1, 0.068, and 0.045, and contain 57,138, 37,820, and 18,895 galaxies, respectively. We correct for incompleteness caused by fiber collisions and survey edges and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

Collaboration


Dive into the Roman Scoccimarro's collaboration.

Top Co-Authors

Avatar

Ravi K. Sheth

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Idit Zehavi

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan Scranton

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge