Roman Słowiński
Poznań University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roman Słowiński.
Communications of The ACM | 1995
Zdzisław Pawlak; Jerzy W. Grzymala-Busse; Roman Słowiński; Wojciech Ziarko
Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s [11, 12], is a new mathematical tool to deal with vagueness and uncertainty. This approach seems to be of fundamental importance to artificial intelligence (AI) and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, decision support systems, inductive reasoning, and pattern recognition.
European Journal of Operational Research | 2001
Salvatore Greco; Benedetto Matarazzo; Roman Słowiński
The original rough set approach proved to be very useful in dealing with inconsistency problems following from information granulation. It operates on a data table composed of a set U of objects (actions) described by a set Q of attributes. Its basic notions are: indiscernibility relation on U, lower and upper approximation of either a subset or a partition of U, dependence and reduction of attributes from Q, and decision rules derived from lower approximations and boundaries of subsets identified with decision classes. The original rough set idea is failing, however, when preference-orders of attribute domains (criteria) are to be taken into account. Precisely, it cannot handle inconsistencies following from violation of the dominance principle. This inconsistency is characteristic for preferential information used in multicriteria decision analysis (MCDA) problems, like sorting, choice or ranking. In order to deal with this kind of inconsistency a number of methodological changes to the original rough sets theory is necessary. The main change is the substitution of the indiscernibility relation by a dominance relation, which permits approximation of ordered sets in multicriteria sorting. To approximate preference relations in multicriteria choice and ranking problems, another change is necessary: substitution of the data table by a pairwise comparison table, where each row corresponds to a pair of objects described by binary relations on particular criteria. In all those MCDA problems, the new rough set approach ends with a set of decision rules playing the role of a comprehensive preference model. It is more general than the classical functional or relational model and it is more understandable for the users because of its natural syntax. In order to workout a recommendation in one of the MCDA problems, we propose exploitation procedures of the set of decision rules. Finally, some other recently obtained results are given: rough approximations by means of similarity relations, rough set handling of missing data, comparison of the rough set model with Sugeno and Choquet integrals, and results on equivalence of a decision rule preference model and a conjoint measurement model which is neither additive nor transitive.
IEEE Transactions on Knowledge and Data Engineering | 2000
Roman Słowiński; Daniel Vanderpooten
This paper proposes new definitions of lower and upper approximations, which are basic concepts of the rough set theory. These definitions follow naturally from the concept of ambiguity introduced in this paper. The new definitions are compared to the classical definitions and are shown to be more general, in the sense that they are the only ones which can be used for any type of indiscernibility or similarity relation.
Archive | 1992
Roman Słowiński
The paper presents the system LERS for rule induction. The system handles inconsistencies in the input data due to its usage of rough set theory principle. Rough set theory is especialIy well suited to deal with inconsistencies. In this approach, inconsistencies are not corrected. Instead, system LERS computes lower and upper approximations of each concept. Then it induces certain rules and possible rules. The user has the choice to use the machine learning approach or the knowledge acquisition approach. In the first case, the system induces a single minimal discriminant description for each concept. In the second case, the system induces alI rules, each in the minimal form, that can be induced from the input data. In both cases, the user has a choice between the local or global approach.
European Journal of Operational Research | 1999
Augustinos I. Dimitras; Roman Słowiński; Robert Susmaga; Constantin Zopounidis
A large number of methods like discriminant analysis, logit analysis, recursive partitioning algorithm, etc., have been used in the past for the prediction of business failure. Although some of these methods lead to models with a satisfactory ability to discriminate between healthy and bankrupt firms, they suAer from some limitations, often due to the unrealistic assumption of statistical hypotheses or due to a confusing language of communication with the decision makers. This is why we have undertaken a research aiming at weakening these limitations. In this paper, the rough set approach is used to provide a set of rules able to discriminate between healthy and failing firms in order to predict business failure. Financial characteristics of a large sample of 80 Greek firms are used to derive a set of rules and to evaluate its prediction ability. The results are very encouraging, compared with those of discriminant and logit analyses, and prove the usefulness of the proposed method for business failure prediction. The rough set approach discovers relevant subsets of financial characteristics and represents in these terms all important relationships between the image of a firm and its risk of failure. The method analyses only facts hidden in the input data and communicates with the decision maker in the natural language of rules derived from his/her experience. ” 1999 Elsevier Science B.V. All rights reserved.
European Journal of Operational Research | 1999
Salvatore Greco; Benedetto Matarazzo; Roman Słowiński
An original methodology for using rough sets to preference modeling in multi-criteria decision problems is presented. This methodology operates on a pairwise comparison table (PCT), including pairs of actions described by graded preference relations on particular criteria and by a comprehensive preference relation. It builds up a rough approximation of a preference relation by graded dominance relations. Decision rules derived from the rough approximation of a preference relation can be used to obtain a recommendation in multi-criteria choice and ranking problems. The methodology is illustrated by an example of multi-criteria programming of water supply systems.
European Journal of Operational Research | 2008
Salvatore Greco; Vincent Mousseau; Roman Słowiński
We present a new method, called UTAGMS, for multiple criteria ranking of alternatives from set A using a set of additive value functions which result from an ordinal regression. The preference information provided by the decision maker is a set of pairwise comparisons on a subset of alternatives ARÂ [subset, double equals]Â A, called reference alternatives. The preference model built via ordinal regression is the set of all additive value functions compatible with the preference information. Using this model, one can define two relations in the set A: the necessary weak preference relation which holds for any two alternatives a, b from set A if and only if for all compatible value functions a is preferred to b, and the possible weak preference relation which holds for this pair if and only if for at least one compatible value function a is preferred to b. These relations establish a necessary and a possible ranking of alternatives from A, being, respectively, a partial preorder and a strongly complete relation. The UTAGMS method is intended to be used interactively, with an increasing subset AR and a progressive statement of pairwise comparisons. When no preference information is provided, the necessary weak preference relation is a weak dominance relation, and the possible weak preference relation is a complete relation. Every new pairwise comparison of reference alternatives, for which the dominance relation does not hold, is enriching the necessary relation and it is impoverishing the possible relation, so that they converge with the growth of the preference information. Distinguishing necessary and possible consequences of preference information on the complete set of actions, UTAGMS answers questions of robustness analysis. Moreover, the method can support the decision maker when his/her preference statements cannot be represented in terms of an additive value function. The method is illustrated by an example solved using the UTAGMS software. Some extensions of the method are also presented.
International Journal of Intelligent Systems | 2002
Salvatore Greco; Benedetto Matarazzo; Roman Słowiński
In this article we are considering a multicriteria classification that differs from usual classification problems since it takes into account preference orders in the description of objects by condition and decision attributes. To deal with multicriteria classification we propose to use a dominance‐based rough set approach (DRSA). This approach is different from the classic rough set approach (CRSA) because it takes into account preference orders in the domains of attributes and in the set of decision classes. Given a set of objects partitioned into pre‐defined and preference‐ordered classes, the new rough set approach is able to approximate this partition by means of dominance relations (instead of indiscernibility relations used in the CRSA). The rough approximation of this partition is a starting point for induction of if‐then decision rules. The syntax of these rules is adapted to represent preference orders. The DRSA keeps the best properties of the CRSA: it analyses only facts present in data, and possible inconsistencies are not corrected. Moreover, the new approach does not need any prior discretization of continuous‐valued attributes. In this article we characterize the DRSA as well as decision rules induced from these approximations. The usefulness of the DRSA and its advantages over the CRSA are presented in a real study of evaluation of the risk of business failure.
Journal of Global Optimization | 1998
Vincent Mousseau; Roman Słowiński
Given a finite set of alternatives, the sorting problem consists in the assignment of each alternative to one of the pre-defined categories. In this paper, we are interested in multiple criteria sorting problems and, more precisely, in the existing method ELECTRE TRI. This method requires the elicitation of parameters (weights, thresholds, category limits,...) in order to construct the Decision Makers (DM) preference model. A direct elicitation of these parameters being rather difficult, we proceed to solve this problem in a way that requires from the DM much less cognitive effort. We elicit these parameters indirectly using holistic information given by the DM through assignment examples. We propose an interactive approach that infers the parameters of an ELECTRE TRI model from assignment examples. The determination of an ELECTRE TRI model that best restitutes the assignment examples is formulated through an optimization problem. The interactive aspect of this approach lies in the possibility given to the DM to revise his/her assignment examples and/or to give additional information before the optimization phase restarts.
Lecture Notes in Computer Science | 1998
Salvatore Greco; Benedetto Matarazzo; Roman Słowiński
The rough sets theory proposed by Pawlak [8,9] was originally founded on the idea of approximating a given set by means of indiscernibility binary relation, which was assumed to be an equivalence relation (reflexive, symmetric and transitive). With respect to this basic idea, two main theoretical developments have been proposed: some extensions to a fuzzy context (e.g. Dubois and Prade, [1,2], Slowinski and Stefanowski, [13,14,15], Yao, [19]) and some extensions of the indiscernibility relation by means of more general binary relations (e.g. Nieminen, [7], Lin, [5], Marcus, [6], Polkowski, Skowron and Zytkow, [10], Skowron and Stepaniuk, [11], Slowinski, [12], Slowinski and Vanderpooten, [16,17,18], Yao and Wong, [20]). In the latter extensions, we wish to point out the proposal of Slowinski and Vanderpooten( [16,17,18]) who introduced and characterized a general definition of rough approximations using a similarity relation which is a reflexive binary relation, relaxing the assumption of symmetry and transitivity.