Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roman Thaler is active.

Publication


Featured researches published by Roman Thaler.


Journal of Biological Chemistry | 2011

Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation.

Roman Thaler; Marlies Agsten; Silvia Spitzer; E.P. Paschalis; Heidrun Karlic; Klaus Klaushofer; Franz Varga

Elevated homocysteine (Hcys) serum levels represent a risk factor for several chronic pathologies, including cardiovascular disease, atherosclerosis, and chronic renal failure, and affect bone development, quality, and homeostasis. Hcys influences the formation of a stable bone matrix directly through the inhibition of the collagen cross-linking enzyme lysyl oxidase (Lox) and, as we have shown recently, by repressing its mRNA expression. The aim of this study was to investigate the mechanisms involved in this process. Through evaluation of gene arrays, quantitative RT-PCR, immunoblots, and ELISA, we identified a Hcys-dependent stimulation of interleukin 6 (IL-6) and genes involved in IL-6/Janus kinase 2 (JAK2)-dependent signal transduction pathways in pre-osteoblastic MC3T3-E1 cells. Moreover, up-regulation of genes essential for epigenetic DNA methylation (DNA (cytosine-5)-methyltransferases and helicase lymphoid-specific (Hells) was observed. Further investigations demonstrated that Hcys increased via IL-6/JAK2 the expression of Fli1 (Friend leukemia virus integration 1), a transcription factor, which we found essential for IL-6-dependent Dnmt1 stimulation. CpG methylation analysis of CpG-rich Lox proximal promoter revealed an increased CpG methylation status after treatment of the cells with Hcys indicating an epigenetic origin for Hcys-dependent Lox repression. Inhibition of the IL-6/JAK2 pathway or of CpG methylation reversed the repressive effect of Hcys on Lox expression. In conclusion, we demonstrate that Hcys stimulates IL-6 synthesis in osteoblasts, which is known to affect bone metabolism via osteoclasts. Furthermore, IL-6 stimulation results via JAK2, Fli1, and Dnmt1 in down-regulation of Lox expression by epigenetic CpG methylation revealing a new mechanism negatively affecting bone matrix formation.


Journal of Biological Chemistry | 2015

Epigenetic control of skeletal development by the histone methyltransferase Ezh2

Amel Dudakovic; Emily T. Camilleri; Fuhua Xu; Scott M. Riester; Meghan E. McGee-Lawrence; Elizabeth W. Bradley; Christopher R. Paradise; Eric A. Lewallen; Roman Thaler; David R. Deyle; A. Noelle Larson; David G. Lewallen; Allan B. Dietz; Gary S. Stein; Martin A. Montecino; Jennifer J. Westendorf; Andre J. Van Wijnen

Background: Osteogenic differentiation is initiated by transcriptional and post-transcriptional epigenetic mechanisms. Results: Inhibition of H3K27 methyltransferase EZH2 enhances osteogenic commitment of human mesenchymal progenitors, and its depletion in mouse mesenchymal cells causes multiple skeletal abnormalities. Conclusion: EZH2 is required for skeletal patterning and bone formation. Significance: EZH2-dependent epigenetic mechanisms control osteogenesis both in vitro and in vivo. Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production.


Bone | 2010

Differential effects of homocysteine and beta aminopropionitrile on preosteoblastic MC3T3-E1 cells.

Roman Thaler; Silvia Spitzer; Monika Rumpler; Nadja Fratzl-Zelman; Klaus Klaushofer; Eleftherios P. Paschalis; Franz Varga

Compounds, like beta-aminopropionitrile (bAPN) and homocysteine (hcys), are known to inhibit a stable matrix formation. Osteoblast-synthesized collagen matrix regulates the differentiation of precursor cells into mature osteoblasts. They express lysyl oxidase, an enzyme involved in the collagen cross-linking process. Lately, plasma hcys levels have recently been strongly correlated with fracture in humans. We have previously shown that bAPN not only disturbs collagen cross-links but also affects osteoblastic differentiation in a cell culture system. The aim of the present study was to investigate the effects of bAPN and hcys on collagen cross-links and gene expression at the mRNA level by FTIR and quantitative RT-PCR, respectively. We found that bAPN and hcys down-regulated cell multiplication. While bAPN also down-regulated the metabolic activity of MC3T3-E1 cells, hcys down-regulated it by lower concentrations but up-regulated it by higher; both substances up-regulated alkaline phosphatase activity. The substances increased the ratio of pyr/divalent cross-links of collagen, and down-regulated mRNA expression of lysyl hydroxylase (Plod2) and lysyl oxidase (Lox), genes which play an important role in the formation of a stable matrix. Furthermore, we demonstrate that both substances stimulated the expression of Runx2, an indispensable regulator of osteoblastic differentiation. However, analysis of genome wide mRNA expression suggests that hcys and bAPN have differential effects on genes involved in osteoblastic differentiation and phenotype regulation. The results indicate that although both bAPN and hcys affect collagen cross-link post-translational modifications in a similar manner as far as pyr and divalent cross-links are concerned, they have differential effects on the monitored genes expression at the mRNA level, with hcys exerting a broader effect on the genome wide mRNA expression.


Epigenetics | 2012

DMSO is a strong inducer of DNA hydroxymethylation in pre-osteoblastic MC3T3-E1 cells

Roman Thaler; Silvia Spitzer; Heidrun Karlic; Klaus Klaushofer; Franz Varga

Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.


Biochemical and Biophysical Research Communications | 2010

T3 affects expression of collagen I and collagen cross-linking in bone cell cultures

Franz Varga; Monika Rumpler; R. Zoehrer; Claudia Turecek; Silvia Spitzer; Roman Thaler; E.P. Paschalis; Klaus Klaushofer

Thyroid hormones (T3, T4) have a broad range of effects on bone, however, its role in determining the quality of bone matrix is poorly understood. In-vitro, the immortalized mouse osteoblast-like cell line MC3T3-E1 forms a tissue like structure, consisting of several cell layers, whose formation is affected by T3 significantly. In this culture system, we investigated the effects of T3 on cell multiplication, collagen synthesis, expression of genes related to the collagen cross-linking process and on the formation of cross-links. T3 compared to controls modulated cell multiplication, up-regulated collagen synthesis time and dose dependently, and stimulated protein synthesis. T3 increased mRNA expressions of procollagen-lysine-1,2-oxoglutarate 5-dioxygenase 2 (Plod2) and of lysyloxidase (Lox), both genes involved in post-translational modification of collagen. Moreover, it stimulated mRNA expression of bone morphogenetic protein 1 (Bmp1), the processing enzyme of the lysyloxidase-precursor and of procollagen. An increase in the collagen cross-link-ratio Pyr/deDHLNL indicates, that T3 modulated cross-link maturation in the MC3T3-E1 culture system. These results demonstrate that T3 directly regulates collagen synthesis and collagen cross-linking by up-regulating gene expression of the specific cross-link related enzymes, and underlines the importance of a well-balanced concentration of thyroid hormones for maintenance of bone quality.


Cancer Genetics and Cytogenetics | 2015

Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells

Heidrun Karlic; Roman Thaler; Christopher Gerner; Thomas W. Grunt; Katharina Proestling; Florian Haider; Franz Varga

The mevalonate pathway provides metabolites for post-translational modifications such as farnesylation, which are critical for the activity of RAS downstream signaling. Subsequently occurring regulatory processes can induce an aberrant stimulation of DNA methyltransferase (DNMT1) as well as changes in histone deacetylases (HDACs) and microRNAs in many cancer cell lines. Inhibitors of the mevalonate pathway are increasingly recognized as anticancer drugs. Extensive evidence indicates an intense cross-talk between signaling pathways, which affect growth, differentiation, and apoptosis either directly or indirectly via epigenetic mechanisms. Herein, we show data obtained by novel transcriptomic and corresponding methylomic or proteomic analyses from cell lines treated with pharmacologic doses of respective inhibitors (i.e., simvastatin, ibandronate). Metabolic pathways and their epigenetic consequences appear to be affected by a changed concentration of NADPH. Moreover, since the mevalonate metabolism is part of a signaling network, including vitamin D metabolism or fatty acid synthesis, the epigenetic activity of associated pathways is also presented. This emphasizes the far-reaching epigenetic impact of metabolic therapies on cancer cells and provides some explanation for clinical observations, which indicate the anticancer activity of statins and bisphosphonates.


Journal of Biological Chemistry | 2016

Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate

Roman Thaler; Antonio Maurizi; Paul Roschger; Ines Sturmlechner; Farzaneh Khani; Silvia Spitzer; Monika Rumpler; Jochen Zwerina; Heidrun Karlic; Amel Dudakovic; Klaus Klaushofer; Anna Teti; Nadia Rucci; Franz Varga; Andre J. van Wijnen

Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation via Tet1 and Tet2 and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2, Col1a1, Bglap2, Sp7, Atf4, and Alpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of the Tet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorption in vivo. Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis.


Journal of Orthopaedic Research | 2016

Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee

Matthew A. Getzlaf; Eric A. Lewallen; Hilal Maradit Kremers; Dakota L. Jones; Carolina A. Bonin; Amel Dudakovic; Roman Thaler; Robert C. Cohen; David G. Lewallen; Andre J. van Wijnen

Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient‐specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic‐resistant and polymicrobial bacteria.


Apoptosis | 2010

Extra-cellular matrix suppresses expression of the apoptosis mediator Fas by epigenetic DNA methylation

Roman Thaler; Heidrun Karlic; Silvia Spitzer; Klaus Klaushofer; Franz Varga

The extracellular matrix (ECM) of bone consists mainly of collagen type I, which induces osteoblastic differentiation and prevents apoptosis. Fas induces apoptosis in cells improperly adhering to ECM. Recently, it was described that Fas expression is modulated by epigenetic DNA methylation. Mouse MC3T3-E1 pre-osteoblastic cells were cultured either on collagen coated or on uncoated culture dishes for control. mRNA was isolated and gene expression was analyzed by quantitative RT–PCR. Furthermore, we measured global and specific DNA methylation. Compared to controls, cells cultured on collagen-coated dishes increased the expression of Runx2 and OCN indicating differentiation of pre-osteoblastic cells. Additionally, collagen up-regulated cyclin-A2 and down-regulated Fas expression suggesting increased cell multiplication. Furthermore, the expression of Dnmt1 and Hells, key mediators of the DNA-methylation process, was increased. As a consequence, we demonstrate that global DNA methylation and specific methylation of the Fas promoter was higher in MC3T3-E1 cells cultured on collagen when compared to controls. Investigation of signal transduction pathways by mean of inhibitors suggests that focal adhesion kinase, MAP- and Jun-kinases and AP-1 are involved in this process. In summary, we demonstrate that ECM prevents activation of Fas by epigenetic DNA-methylation.


Journal of Biological Chemistry | 2016

Enhancer of Zeste Homolog 2 Inhibition Stimulates Bone Formation and Mitigates Bone Loss Caused by Ovariectomy in Skeletally Mature Mice.

Amel Dudakovic; Emily T. Camilleri; Scott M. Riester; Christopher R. Paradise; Martina Gluscevic; Tom O'Toole; Roman Thaler; Jared M. Evans; Huihuang Yan; Malayannan Subramaniam; John R. Hawse; Gary S. Stein; Martin A. Montecino; Meghan E. McGee-Lawrence; Jennifer J. Westendorf; Andre J. van Wijnen

Perturbations in skeletal development and bone degeneration may result in reduced bone mass and quality, leading to greater fracture risk. Bone loss is mitigated by bone protective therapies, but there is a clinical need for new bone-anabolic agents. Previous work has demonstrated that Ezh2 (enhancer of zeste homolog 2), a histone 3 lysine 27 (H3K27) methyltransferase, suppressed differentiation of osteogenic progenitors. Here, we investigated whether inhibition of Ezh2 can be leveraged for bone stimulatory applications. Pharmacologic inhibition and siRNA knockdown of Ezh2 enhanced osteogenic commitment of MC3T3 preosteoblasts. Next generation RNA sequencing of mRNAs and real time quantitative PCR profiling established that Ezh2 inactivation promotes expression of bone-related gene regulators and extracellular matrix proteins. Mechanistically, enhanced gene expression was linked to decreased H3K27 trimethylation (H3K27me3) near transcriptional start sites in genome-wide sequencing of chromatin immunoprecipitations assays. Administration of an Ezh2 inhibitor modestly increases bone density parameters of adult mice. Furthermore, Ezh2 inhibition also alleviated bone loss in an estrogen-deficient mammalian model for osteoporosis. Ezh2 inhibition enhanced expression of Wnt10b and Pth1r and increased the BMP-dependent phosphorylation of Smad1/5. Thus, these data suggest that inhibition of Ezh2 promotes paracrine signaling in osteoblasts and has bone-anabolic and osteoprotective potential in adults.

Collaboration


Dive into the Roman Thaler's collaboration.

Top Co-Authors

Avatar

Klaus Klaushofer

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Franz Varga

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.P. Paschalis

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge