Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roman V. Shchepin is active.

Publication


Featured researches published by Roman V. Shchepin.


Journal of the American Chemical Society | 2015

Microtesla SABRE Enables 10% Nitrogen-15 Nuclear Spin Polarization

Thomas Theis; Milton L. Truong; Aaron M. Coffey; Roman V. Shchepin; Kevin W. Waddell; Fan Shi; Boyd M. Goodson; Warren S. Warren; Eduard Y. Chekmenev

Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B3 amide) by conducting “signal amplification by reversible exchange” (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the 15N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed “SABRE in shield enables alignment transfer to heteronuclei” or “SABRE-SHEATH”, promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species.


Journal of Physical Chemistry B | 2014

Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

Milton L. Truong; Fan Shi; Ping He; Bingxin Yuan; Kyle N. Plunkett; Aaron M. Coffey; Roman V. Shchepin; Danila A. Barskiy; Kirill V. Kovtunov; Igor V. Koptyug; Kevin W. Waddell; Boyd M. Goodson; Eduard Y. Chekmenev

Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized 1H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst’s full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent—paving the way to various biomedical applications of SABRE hyperpolarization methods.


Journal of the American Chemical Society | 2014

The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T)

Danila A. Barskiy; Kirill V. Kovtunov; Igor V. Koptyug; Ping He; Kirsten A. Groome; Quinn A. Best; Fan Shi; Boyd M. Goodson; Roman V. Shchepin; Aaron M. Coffey; Kevin W. Waddell; Eduard Y. Chekmenev

1H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective 1H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.


Analytical Chemistry | 2014

Parahydrogen Induced Polarization of 1-13C-Phospholactate-d2 for Biomedical Imaging with >30,000,000-fold NMR Signal Enhancement in Water

Roman V. Shchepin; Aaron M. Coffey; Kevin W. Waddell; Eduard Y. Chekmenev

The synthetic protocol for preparation of 1-13C-phosphoenolpyruvate-d2, precursor for parahydrogen-induced polarization (PHIP) of 1-13C-phospholactate-d2, is reported. 13C nuclear spin polarization of 1-13C-phospholactate-d2 was increased by >30,000,000-fold (5.75 mT) in water. The reported 13C polarization level approaching unity (>15.6%), long lifetime of 13C hyperpolarized 1-13C-phospholactate-d2 (58 ± 4 s versus 36 ± 2 s for nondeuterated form at 47.5 mT), and large production quantities (52 μmoles in 3 mL) in aqueous medium make this compound useful as a potential contrast agent for the molecular imaging of metabolism and other applications.


Journal of the American Chemical Society | 2012

PASADENA hyperpolarized 13C phospholactate.

Roman V. Shchepin; Aaron M. Coffey; Kevin W. Waddell; Eduard Y. Chekmenev

We demonstrate that potassium 1-(13)C-phosphoenolpyruvate becomes hyperpolarized potassium 1-(13)C-phospholactate with (13)C T(1) = 36 s after molecular hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment). This proof-of-principle study was conducted with a fully protonated molecular precursor. (13)C was polarized to a level of 1%, corresponding to nearly 4000-fold sensitivity enhancement at 3 T. The relevant homo- and heteronuclear spin-spin couplings are reported.


ACS Sensors | 2016

15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH

Roman V. Shchepin; Danila A. Barskiy; Aaron M. Coffey; Thomas Theis; Fan Shi; Warren S. Warren; Boyd M. Goodson; Eduard Y. Chekmenev

15N nuclear spins of imidazole-15N2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole-15N2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15N site of imidazole occurs at physiological pH (pKa ∼ 7.0), and the binding event changes the 15N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms.


Journal of the American Chemical Society | 2016

Over 20% 15N Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe

Danila A. Barskiy; Roman V. Shchepin; Aaron M. Coffey; Thomas Theis; Warren S. Warren; Boyd M. Goodson; Eduard Y. Chekmenev

Direct NMR hyperpolarization of naturally abundant 15N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P15N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P15N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding 15N site (using J2H-15N), we also hyperpolarized more distant 15N sites in metronidazole using longer-range spin–spin couplings (J4H-15N and J5H-15N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing.


Journal of Physical Chemistry Letters | 2015

Hyperpolarization of “Neat” Liquids by NMR Signal Amplification by Reversible Exchange

Roman V. Shchepin; Milton L. Truong; Thomas Theis; Aaron M. Coffey; Fan Shi; Kevin W. Waddell; Warren S. Warren; Boyd M. Goodson; Eduard Y. Chekmenev

We report NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization of the rare isotopes in “neat” liquids, each composed only of an otherwise pure target compound with isotopic natural abundance (n.a.) and millimolar concentrations of dissolved catalyst. Pyridine (Py) or Py derivatives are studied at 0.4% isotopic natural abundance 15N, deuterated, 15N enriched, and in various combinations using the SABRE-SHEATH variant (microTesla magnetic fields to permit direct 15N polarization from parahydrogen via reversible binding and exchange with an Ir catalyst). We find that the dilute n.a. 15N spin bath in Py still channels spin order from parahydrogen to dilute 15N spins, without polarization losses due to the presence of 14N or 2H. We demonstrate P15N ≈ 1% (a gain of 2900 fold relative to thermal polarization at 9.4 T) at high substrate concentrations. This fundamental finding has a significant practical benefit for screening potentially hyperpolarizable contrast agents without labeling. The capability of screening at n.a. level of 15N is demonstrated on examples of mono- and dimethyl-substituted Py (picolines and lutidines previously identified as promising pH sensors), showing that the presence of a methyl group in the ortho position significantly decreases SABRE hyperpolarization.


Journal of Physical Chemistry C | 2017

Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange

Johannes F. P. Colell; Angus W. J. Logan; Zijian Zhou; Roman V. Shchepin; Danila A. Barskiy; Gerardo X. Ortiz; Qiu Wang; Steven J. Malcolmson; Eduard Y. Chekmenev; Warren S. Warren; Thomas Theis

Signal Amplification by Reversible Exchange (SABRE) is a fast and convenient NMR hyperpolarization method that uses cheap and readily available para-hydrogen as a hyperpolarization source. SABRE can hyperpolarize protons and heteronuclei. Here we focus on the heteronuclear variant introduced as SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to Heteronuclei) and nitrogen-15 targets in particular. We show that 15N-SABRE works more efficiently and on a wider range of substrates than 1H-SABRE, greatly generalizing the SABRE approach. In addition, we show that nitrogen-15 offers significantly extended T1 times of up to 12 minutes. Long T1 times enable higher hyperpolarization levels but also hold the promise of hyperpolarized molecular imaging for several tens of minutes. Detailed characterization and optimization are presented, leading to nitrogen-15 polarization levels in excess of 10% on several compounds.


ChemPhysChem | 2014

In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization†

Danila A. Barskiy; Kirill V. Kovtunov; Igor V. Koptyug; Ping He; Kirsten A. Groome; Quinn A. Best; Fan Shi; Boyd M. Goodson; Roman V. Shchepin; Milton L. Truong; Aaron M. Coffey; Kevin W. Waddell; Eduard Y. Chekmenev

By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields.

Collaboration


Dive into the Roman V. Shchepin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boyd M. Goodson

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Kirill V. Kovtunov

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor V. Koptyug

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Shi

Southern Illinois University Carbondale

View shared research outputs
Researchain Logo
Decentralizing Knowledge