Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romano Regazzi is active.

Publication


Featured researches published by Romano Regazzi.


Nature Reviews Endocrinology | 2013

Circulating microRNAs as novel biomarkers for diabetes mellitus

Claudiane Guay; Romano Regazzi

Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications.


Diabetes | 2008

Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction

Pascal Lovis; E. Roggli; D. Ross Laybutt; Sonia Gattesco; Jiang-Yan Yang; Christian Widmann; Amar Abderrahmani; Romano Regazzi

OBJECTIVE—Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic β-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS—We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS—Prolonged exposure of the β-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in β-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS—Our findings suggest that at least part of the detrimental effects of palmitate on β-cells is caused by alterations in the level of specific miRNAs.


The EMBO Journal | 1995

VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion.

Romano Regazzi; Claes B. Wollheim; Jochen Lang; J.-M. Theler; O. Rossetto; C. Montecucco; K. Sadoul; U. Weller; M. Palmer; Bernard Thorens

VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta‐cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP‐2 and cellubrevin, but not VAMP‐1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta‐cells contain secretory granules that store and secrete insulin as well as synaptic‐like microvesicles carrying gamma‐aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP‐2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP‐2 with insulin‐containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta‐cells. Pretreatment of streptolysin‐O permeabilized insulin‐secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP‐2 and cellubrevin and abolished Ca(2+)‐induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S‐stimulated insulin secretion. Taken together, our results show that pancreatic beta‐cells express VAMP‐2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)‐mediated insulin secretion.


Diabetes | 2010

Involvement of MicroRNAs in the Cytotoxic Effects Exerted by Proinflammatory Cytokines on Pancreatic β-Cells

E. Roggli; Aurore Britan; Sonia Gattesco; Nathalie Lin-Marq; Amar Abderrahmani; Paolo Meda; Romano Regazzi

OBJECTIVE Pancreatic β-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated β-cell cytotoxicity. RESEARCH DESIGN AND METHODS We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in β-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated β-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS We found that IL-1β and TNF-α induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1β exposure. Moreover, anti–miR-34a and anti–miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS Our data identify miR-21, miR-34a, and miR-146a as novel players in β-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.


Biological Chemistry | 2008

Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs.

Pascal Lovis; Sonia Gattesco; Romano Regazzi

Abstract Fine-tuning of insulin secretion from pancreatic β-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the β-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3′-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters.


Translational Research | 2011

Diabetes mellitus, a microRNA-related disease?

Claudiane Guay; E. Roggli; Valeria Nesca; Cécile Jacovetti; Romano Regazzi

Diabetes mellitus is a complex disease resulting in altered glucose homeostasis. In both type 1 and type 2 diabetes mellitus, pancreatic β cells cannot secrete appropriate amounts of insulin to regulate blood glucose level. Moreover, in type 2 diabetes mellitus, altered insulin secretion is combined with a resistance of insulin-target tissues, mainly liver, adipose tissue, and skeletal muscle. Both environmental and genetic factors are known to contribute to the development of the disease. Growing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNA molecules, are involved in the pathogenesis of diabetes. miRNAs function as translational repressors and are emerging as important regulators of key biological processes. Here, we review recent studies reporting changes in miRNA expression in tissues isolated from different diabetic animal models. We also describe the role of several miRNAs in pancreatic β cells and insulin-target tissues. Finally, we discuss the possible use of miRNAs as blood biomarkers to prevent diabetes development and as tools for gene-based therapy to treat both type 1 and type 2 diabetes mellitus.


Diabetes | 2012

Changes in MicroRNA Expression Contribute to Pancreatic β-Cell Dysfunction in Prediabetic NOD Mice

E. Roggli; Sonia Gattesco; Dorothée Caille; Claire Briet; Christian Boitard; Paolo Meda; Romano Regazzi

During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes.


Diabetes | 2008

Exendin-4 Protects β-Cells From Interleukin-1β–Induced Apoptosis by Interfering With the c-Jun NH2-Terminal Kinase Pathway

Mourad Ferdaoussi; Saida Abdelli; Jiang-Yan Yang; Marion Cornu; Guy Niederhauser; Dimitri Favre; Christian Widmann; Romano Regazzi; Bernard Thorens; Gérard Waeber; Amar Abderrahmani

OBJECTIVE— The pro-inflammatory cytokine interleukin-1β (IL-1β) generates pancreatic β-cells apoptosis mainly through activation of the c-Jun NH2-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced β-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS— Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1β. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS— Ex-4 inhibited induction of the JNK pathway elicited by IL-1β. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1β. CONCLUSIONS— The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1β and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.


The EMBO Journal | 1995

Direct control of exocytosis by receptor-mediated activation of the heterotrimeric GTPases Gi and G(o) or by the expression of their active G alpha subunits.

Jochen Lang; I Nishimoto; T Okamoto; Romano Regazzi; C Kiraly; U. Weller; Claes B. Wollheim

The exocytotic release of potent hormones is a tightly controlled process. Its direct regulation without the involvement of second messengers would ensure rapid signal processing. In streptolysin O‐permeabilized insulin‐secreting cells, a preparation allowing dialysis of cytosolic macromolecules, activation of alpha 2‐adrenergic receptors caused pertussis toxin‐sensitive inhibition of calcium‐induced exocytosis. This inhibition was mimicked very efficiently by the use of specific receptor‐mimetic peptides, indicating the involvement of Gi and, to a lesser extent, of G(o). The regulation was exerted beyond the ATP‐dependent step of exocytosis. In addition, low nanomolar amounts of pre‐activated Gi/G(o) directly inhibited exocytosis. As transient overexpression of constitutively active mutants of G alpha i1, G alpha i2, G alpha i3 and G alpha o2 but not of G alpha o1 reproduced this regulation, the G alpha subunit alone is sufficient to induce inhibition. These results define exocytosis as an effector for heterotrimeric G‐proteins and delineate the properties of the transduction pathway.


Diabetologia | 2007

Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells

Amar Abderrahmani; Guy Niederhauser; Dimitri Favre; Saida Abdelli; Mourad Ferdaoussi; Jiang-Yan Yang; Romano Regazzi; Christian Widmann; Gérard Waeber

Aims/hypothesisWe explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function.Materials and methodsIsolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei.ResultsProlonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL.Conclusions/interpretationThese data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.

Collaboration


Dive into the Romano Regazzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Roggli

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Paola Bezzi

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge