Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romanthi J. Madawala is active.

Publication


Featured researches published by Romanthi J. Madawala.


Journal of Inorganic Biochemistry | 2009

Fluorescent analogues of quinoline reveal amine ligand loss from cis and trans platinum(II) complexes in cancer cells

Elizabeth J. New; Cécile Roche; Romanthi J. Madawala; Jenny Z. Zhang; Trevor W. Hambley

Analogues of cytotoxic cis and trans dichloridoplatinum(II) complexes with one ammonia and one aromatic amine (cis- and trans-[PtCl(2)(aromatic amine)(NH(3))]) were synthesised in which the aromatic group was replaced by the fluorescent ligand 7-azaindole (1). Coordination resulted in almost complete quenching of the fluorescence and the ligand had a effect on the biological activities of the cis and trans isomers similar to that previously reported for aromatic amines as is exemplified by them having similar cytotoxicities (IC(50) 3.6(5) and 6.0(19)microM, respectively). Observation of fluorescence following treatment of the cis complex with cysteine, glutathione, or methionine suggests labilisation and subsequent loss of the putative non-leaving group ligands. No such effect was observed for the trans complex which does not experience trans labilisation. Two-photon excitation of cells that had been treated with the complexes gave rise to observable fluorescence, suggesting ligand displacement for both complexes. The fluorescence appears to be localised in the lysosomes or late endosomes. These complexes are excellent models of analogues of cytotoxic cis and trans complexes with aromatic amine ligands and can be used to study the metabolism of the non-leaving group positions.


Histochemistry and Cell Biology | 2014

Caveolins redistribute in uterine epithelial cells during early pregnancy in the rat: An epithelial polarisation strategy?

Romanthi J. Madawala; Sam Dowland; Connie E. Poon; Laura A. Lindsay; Christopher R. Murphy

Abstract At the time of implantation, uterine luminal epithelial cells undergo a dramatic change in all plasma membrane domains. Changes in the basolateral plasma membrane at the time of implantation include progression from smooth to highly tortuous, as well as a loss of integrin-based focal adhesions. Another aspect of the basolateral plasma membrane that has not been studied in uterine epithelial cells are caveolae, which are omega-shaped invaginations of the plasma membrane known to be involved in endocytosis and contribute to membrane curvature. The current study investigated caveolin, a major protein of caveolae, to explore the possible roles that they play in the remodelling of the basolateral plasma membrane of uterine epithelial cells during early pregnancy in the rat. Morphological caveolae were found at the time of implantation and were significantly increased compared to day 1 of pregnancy. Caveolins 1 and 2 were found to shift to the basolateral plasma membrane of uterine epithelial cells at the time of implantation as well as when treated with progesterone alone, and in combination with oestrogen. A statistically significant increase in the amount of caveolin-1 and a decrease in caveolin-2 protein in uterine epithelial cells was observed at the time of implantation. Caveolin-1 also co-immunoprecipitated with integrin β1 on day 1 of pregnancy, which is a protein that has been reported to be found in integrin-based focal adhesions at the basolateral membrane on day 1 of pregnancy. The localisation and expression of caveolin-1 at the time of implantation is consistent with the presence and increase of morphological caveolae seen at this time. The localisation and expression of caveolins 1 and 2 in luminal uterine epithelium at the time of implantation suggest a role in trafficking proteins and the maintenance of a polarised epithelium.


Histochemistry and Cell Biology | 2013

Claudin 7 is reduced in uterine epithelial cells during early pregnancy in the rat

Connie E. Poon; Romanthi J. Madawala; Margot L. Day; Christopher R. Murphy

The non-receptive uterine luminal epithelium forms an intact polarised epithelial barrier that is refractory to blastocyst invasion. During implantation, organised dismantling of this barrier leads to a receptive state promoting blastocyst attachment. Claudins are tight junction proteins that increase in the uterine epithelium at the time of implantation. Claudin 7 is a member of this family but demonstrates a basolateral localisation pattern that is distinct from other claudins. The present study investigated the localisation, abundance and hormonal regulation of claudin 7 to elucidate a role for the protein during implantation. The results showed that claudin 7 demonstrates a distinct basal and lateral localisation in the uterine luminal and glandular epithelium throughout early pregnancy. On day 1, claudin 7 is abundantly present in response to ovarian estrogen. At the time of implantation, claudin 7 decreases in abundance. This decrease is not dependent on blastocyst presence, as shown by results in pseudopregnant animals. We propose that claudin 7 mediates intercellular adhesions in the uterine epithelium and also may be responsible for stabilising adhesion proteins at the basolateral cell surface. Thus, claudin 7 may function under the maintenance of the uterine luminal epithelial barrier, in the non-receptive state preventing implantation from occurring.


Molecular Reproduction and Development | 2011

ICAM1 and fibrinogen-γ are increased in uterine epithelial cells at the time of implantation in rats

Laura Lecce; Yui Kaneko; Romanthi J. Madawala; Christopher R. Murphy

Uterine epithelial cells transform into a receptive state to adhere to an implanting blastocyst. Part of this transformation includes the apical concentration of cell adhesion molecules at the time of implantation. This study, for the first time, investigates the expression of ICAM1 and fibrinogen‐γ (FGG) in uterine epithelial cells during normal pregnancy, pseudopregnancy and in hormone‐treated rats. An increase (P < 0.05) in ICAM1 was seen at the apical membrane of uterine epithelial cells at the time of implantation compared with day 1 of pregnancy. ICAM1 was also increased (P < 0.05) on day 6 of pseudopregnancy as well as in ovariectomized rats treated with progesterone plus oestrogen. These results show that ICAM1 up‐regulation at the time of implantation is under the control of progesterone, and is not dependent on cytokine release from the blastocyst or in semen. FGG dimerization increased (P < 0.05) on day 6 of pregnancy compared with day 1, and was not up‐regulated in day 6 pseudopregnant animals, suggesting this increase is dependent on a developing blastocyst. The presence of ICAM1 and FGG in the uterine epithelium at the time of implantation in the rat is similar to that seen in lymphocyte–endothelium adhesion, and we suggest a similar mechanism in embryo–uterine epithelium adhesion is utilized. Mol. Reprod. Dev. 78:318–327, 2011.


Acta Histochemica | 2016

The adherens junction is lost during normal pregnancy but not during ovarian hyperstimulated pregnancy.

Samson N. Dowland; Romanthi J. Madawala; Laura A. Lindsay; Christopher R. Murphy

During early pregnancy in the rat, the luminal uterine epithelial cells (UECs) must transform to a receptive state to permit blastocyst attachment and implantation. The implantation process involves penetration of the epithelial barrier, so it is expected that the transformation of UECs includes alterations in the lateral junctional complex. Previous studies have demonstrated a deepening of the tight junction (zonula occludens) and a reduction in the number of desmosomes (macula adherens) in UECs at the time of implantation. However, the adherens junction (zonula adherens), which is primarily responsible for cell-cell adhesion, has been little studied during early pregnancy. This study investigated the adherens junction in rat UECs during the early stages of normal pregnancy and ovarian hyperstimulated (OH) pregnancy using transmission electron microscopy. The adherens junction is present in UECs at the time of fertilisation, but is lost at the time of blastocyst implantation during normal pregnancy. Interestingly, at the time of implantation after OH, adherens junctions are retained and may impede blastocyst penetration of the epithelium. The adherens junction anchors the actin-based terminal web, which is known to be disrupted in UECs during early pregnancy. However, artificial disruption of the terminal web, using cytochalasin D, did not cause removal of the adherens junction in UECs. This study revealed that adherens junction disassembly occurs during early pregnancy, but that this process does not occur during OH pregnancy. Such disassembly does not appear to depend on the disruption of the terminal web.


Reproductive Sciences | 2016

Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation

Connie E. Poon; Romanthi J. Madawala; Samson N. Dowland; Christopher R. Murphy

Uterine luminal epithelial cells (UECs) undergo the plasma membrane transformation in the transition to receptivity. This involves transient alterations in the apical junctional complex (AJC) including increases to the depth and complexity of the tight junction, loss of the adherens junction, and a decrease in the number of desmosomes along the lateral cell membranes. Nectin-3 is key protein involved in the structure and function of the AJC. This study, used immunofluorescence, Western blotting, colocalization, and coimmunoprecipitation analyses, to investigate whether nectin-3 was present in the rat uterus and was regulated by hormones and the blastocyst during early pregnancy. The results showed that nectin-3 was present in UECs as 3 molecular weight protein isoforms (80 kDa, 60 kDa, and 32 kDa). At the time of fertilization (day 1 of pregnancy), nectin-3 was localized basally, but at the time of implantation, (day 6 of pregnancy) when UECs were receptive, nectin-3 increased in the cellular junctions. When UECs returned to the nonreceptive state (day 9 of pregnancy), nectin-3 redistributed back to the cell cytoplasm. This study also showed that nectin-3 localization at the cell junctions was likely to be controlled by progesterone; however, neither ovarian hormones nor the blastocyst regulated protein abundance. This study further showed that while nectin-3 localized to the tight junction at the time of implantation, it did not interact with occludin or l-afadin. These results suggest that at the time of implantation, nectin-3 may contribute to the formation of the tight junction in a protein complex independent from occludin and l-afadin.


Histochemistry and Cell Biology | 2015

PTRF is associated with caveolin 1 at the time of receptivity: but SDPR is absent at the same time.

Romanthi J. Madawala; Connie E. Poon; Samson N. Dowland; Christopher R. Murphy

The plasma membrane of uterine epithelial cells undergoes a number of changes during early pregnancy. The changes in the basolateral membrane at the time of implantation in particular change from being smooth to highly tortuous in morphology, along with a dramatic increase in the number of morphological caveolae at this time. The major protein of caveolar membranes is caveolin, and previous studies have shown that RNA pol I transcription factor (PTRF) and serum deprivation protein response (SDPR) are the two members of the cavin protein family. These proteins are known to be involved in caveolae biogenesis, where they directly bind to cholesterol and lipids and have been reported to promote membrane curvature. As there is an increase in membrane tortuosity and caveolae at the time of implantation, this study investigated PTRF and SDPR to explore the possible roles that they play in the morphology of the uterine epithelium during early pregnancy. PTRF protein abundance did not change in uterine epithelial cells during early pregnancy or in response to ovarian hormones. At the time of implantation in uterine epithelial cells, PTRF co-immunoprecipitated with caveolin 1, thereby demonstrating an association with caveolin-1 at the basal plasma membrane in caveolae. SDPR protein was observed to be present only at the time of fertilisation, and also under the influence of oestrogen alone, where a cytoplasmic localisation in uterine epithelial cells was observed. The localisation and expression PTRF and SDPR in uterine epithelial cells during early pregnancy suggest that they have roles in the maintenance of lipids and cholesterol in the plasma membrane. PTRF and lack of SDPR may contribute not only to the morphology of the basal plasma membrane as observed at the time of implantation, but also to the maintenance of epithelial polarity during early pregnancy.


Cell and Tissue Research | 2015

EpCAM is decreased but is still present in uterine epithelial cells during early pregnancy in the rat: potential mechanism for maintenance of mucosal integrity during implantation.

Connie E. Poon; Romanthi J. Madawala; Margot L. Day; Christopher R. Murphy

The non-receptive uterine luminal epithelium forms a polarised epithelial barrier, protective against potential pathogenic assault from the external environment and invasion by the blastocyst. However, during the window of implantation, the uterine luminal epithelial cells (UECs) transition to a receptive state by dismantling many of their intercellular and cell–matrix adhesions in preparation for epithelial detachment and subsequent blastocyst implantation. The present study investigated the presence and regulation of the intercellular adhesion protein, Epithelial Cell Adhesion Molecule (EpCAM) during early pregnancy in the rat to understand its role in the transition to receptivity. Immunofluorescence and western blotting analysis were used to study EpCAM expression in normal pregnancy, hormone replacement studies and pseudopregnancy. EpCAM was abundantly expressed and localised to the uterine luminal and glandular epithelium during the non-receptive state but decreased to lower but still observable levels around the time of implantation. This decrease was not dependent on ovarian hormones or the blastocyst. Further, EpCAM colocalised with but did not associate with its frequent binding partner, Tumour necrosis factor α (TNFα)-converting enzyme, also known as A Disintegrin And Metalloprotease 17 (TACE/ADAM17), at the time of fertilisation. These results suggest that, prior to implantation, EpCAM mediates intercellular adhesion in the uterine epithelium, but that, during implantation when UECs lose the majority of their intercellular and cell–matrix adhesions, EpCAM levels are decreased but still present for the maintenance of mucosal integrity.


Reproductive Sciences | 2018

Prominin-2 Prevents the Formation of Caveolae in Normal and Ovarian Hyperstimulated Pregnancy.

Samson N. Dowland; Romanthi J. Madawala; Connie E. Poon; Laura A. Lindsay; Christopher R. Murphy

During early pregnancy, uterine epithelial cells (UECs) become less adherent to the underlying basal lamina and are subsequently removed so the blastocyst can invade the underlying stroma. This process involves the removal of focal adhesions from the basal plasma membrane of UECs. These focal adhesions are thought to be internalized by caveolae, which significantly increase in abundance at the time of blastocyst implantation. A recent in vitro study indicated that prominin-2 prevents the formation of caveolae by sequestering membrane cholesterol. The present study examines whether prominin-2 affects the formation of caveolae and loss of focal adhesions in UECs during normal and ovarian hyperstimulation (OH) pregnancy in the rat. At the time of fertilization during normal pregnancy, prominin-2 is distributed throughout the basolateral plasma membrane. However, at the time of implantation and coincident with an increase in caveolae, prominin-2 is lost from the basal plasma membrane. In contrast, prominin-2 remains in the basolateral plasma membrane throughout OH pregnancy. Transmission electron microscopy showed that this membrane contained few caveolae throughout OH pregnancy. Our results indicate that prominin-2 prevents the formation of caveolae. We suggest the retention of prominin-2 in the basal plasma membrane during OH pregnancy prevents the formation of caveolae and is responsible for the retention of focal adhesions in this membrane, thereby contributing to the reduced implantation rate observed after such treatments.


Reproduction, Fertility and Development | 2017

Prominin-1 glycosylation changes throughout early pregnancy in uterine epithelial cells under the influence of maternal ovarian hormones.

Samson N. Dowland; Romanthi J. Madawala; Connie E. Poon; Laura A. Lindsay; Christopher R. Murphy

In preparation for uterine receptivity, the uterine epithelial cells (UECs) exhibit a loss of microvilli and glycocalyx and a restructuring of the actin cytoskeleton. The prominin-1 protein contains large, heavily glycosylated extracellular loops and is usually restricted to apical plasma membrane (APM) protrusions. The present study examined rat UECs during early pregnancy using immunofluorescence, western blotting and deglycosylation analyses. Ovariectomised rats were injected with oestrogen and progesterone to examine how these hormones affect prominin-1. At the time of fertilisation, prominin-1 was located diffusely in the apical domain of UECs and 147- and 120-kDa glycoforms of prominin-1 were identified, along with the 97-kDa core protein. At the time of implantation, prominin-1 concentrates towards the APM and densitometry revealed that the 120-kDa glycoform decreased (P<0.05), but there was an increase in the 97-kDa core protein (P<0.05). Progesterone treatment of ovariectomised rats resulted in prominin-1 becoming concentrated towards the APM. The 120-kDa glycoform was increased after oestrogen treatment (P<0.0001), whereas the 97-kDa core protein was increased after progesterone treatment (P<0.05). Endoglycosidase H analysis demonstrated that the 120-kDa glycoform is in the endoplasmic reticulum, undergoing protein synthesis. These results indicate that oestrogen stimulates prominin-1 production, whereas progesterone stimulates the deglycosylation and concentration of prominin-1 to the apical region of the UECs. This likely presents the deglycosylated extracellular loops of prominin-1 to the extracellular space, where they may interact with the implanting blastocyst.

Collaboration


Dive into the Romanthi J. Madawala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge