Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romina Ficarella is active.

Publication


Featured researches published by Romina Ficarella.


American Journal of Human Genetics | 2004

Nonmuscle Myosin Heavy-Chain Gene MYH14 Is Expressed in Cochlea and Mutated in Patients Affected by Autosomal Dominant Hearing Impairment (DFNA4)

Francesca Donaudy; Rik Snoeckx; Markus Pfister; Hans Peter Zenner; Nikolaus Blin; Mariateresa Di Stazio; Antonella Ferrara; Carmen Lanzara; Romina Ficarella; Frank Declau; Carsten M. Pusch; Peter Nürnberg; Salvatore Melchionda; Leopoldo Zelante; Ester Ballana; Xavier Estivill; Guy Van Camp; Paolo Gasparini; Anna Savoia

Myosins have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Different members of the myosin superfamily are responsible for syndromic and nonsyndromic hearing impairment in both humans and mice. MYH14 encodes one of the heavy chains of the class II nonmuscle myosins, and it is localized within the autosomal dominant hearing impairment (DFNA4) critical region. After demonstrating that MYH14 is highly expressed in mouse cochlea, we performed a mutational screening in a large series of 300 hearing-impaired patients from Italy, Spain, and Belgium and in a German kindred linked to DFNA4. This study allowed us to identify a nonsense and two missense mutations in large pedigrees, linked to DFNA4, as well as a de novo allele in a sporadic case. Absence of these mutations in healthy individuals was tested in 200 control individuals. These findings clearly demonstrate the role of MYH14 in causing autosomal dominant hearing loss and further confirm the crucial role of the myosin superfamily in auditive functions.


Journal of Medical Genetics | 2005

Espin gene (ESPN) mutations associated with autosomal dominant hearing loss cause defects in microvillar elongation or organisation

Francesca Donaudy; Lili Zheng; Romina Ficarella; Ester Ballana; Massimo Carella; Salvatore Melchionda; Xavier Estivill; James R. Bartles; Paolo Gasparini

Background: Espins are actin bundling proteins present in hair cell stereocilia. A recessive mutation in the espin gene (Espn) has been detected in the jerker mouse and causes deafness, vestibular dysfunction, and hair cell degeneration. More recently mutations in the human espin gene (ESPN) have been described in two families affected by autosomal recessive hearing loss and vestibular areflexia. Objective: To report the identification of four additional ESPN mutations (S719R, D744N, R774Q, and delK848) in patients affected by autosomal dominant hearing loss without vestibular involvement. Results: To determine whether the mutated ESPN alleles affected the biological activity of the corresponding espin proteins in vivo, their ability to target and elongate the parallel actin bundles of brush border microvilli was investigated in transfected LLC-PK1-CL4 epithelial cells. For three mutated alleles clear abnormalities in microvillar length or distribution were obtained. Conclusions: The results further strengthen the causative role of the espin gene in non-syndromic hearing loss and add new insights into espin structure and function.


PLOS ONE | 2013

Differences in Gene Expression and Cytokine Release Profiles Highlight the Heterogeneity of Distinct Subsets of Adipose Tissue-Derived Stem Cells in the Subcutaneous and Visceral Adipose Tissue in Humans

Sebastio Perrini; Romina Ficarella; Ernesto Picardi; Angelo Cignarelli; Maria Pia Foschino Barbaro; Pasquale Nigro; Alessandro Peschechera; Orazio Palumbo; Massimo Carella; Michele De Fazio; Annalisa Natalicchio; Luigi Laviola; Francesco Giorgino

Differences in the inherent properties of adipose tissue-derived stem cells (ASC) may contribute to the biological specificity of the subcutaneous (Sc) and visceral (V) adipose tissue depots. In this study, three distinct subpopulations of ASC, i.e. ASCSVF, ASCBottom, and ASCCeiling, were isolated from Sc and V fat biopsies of non-obese subjects, and their gene expression and functional characteristics were investigated. Genome-wide mRNA expression profiles of ASCSVF, ASCBottom and ASCCeiling from Sc fat were significantly different as compared to their homologous subsets of V-ASCs. Furthermore, ASCSVF, ASCCeiling and ASCBottom from the same fat depot were also distinct from each other. In this respect, both principal component analysis and hierarchical clusters analysis showed that ASCCeiling and ASCSVF shared a similar pattern of closely related genes, which was highly different when compared to that of ASCBottom. However, larger variations in gene expression were found in inter-depot than in intra-depot comparisons. The analysis of connectivity of genes differently expressed in each ASC subset demonstrated that, although there was some overlap, there was also a clear distinction between each Sc-ASC and their corresponding V-ASC subsets, and among ASCSVF, ASCBottom, and ASCCeiling of Sc or V fat depots in regard to networks associated with regulation of cell cycle, cell organization and development, inflammation and metabolic responses. Finally, the release of several cytokines and growth factors in the ASC cultured medium also showed both inter- and intra-depot differences. Thus, ASCCeiling and ASCBottom can be identified as two genetically and functionally heterogeneous ASC populations in addition to the ASCSVF, with ASCBottom showing the highest degree of unmatched gene expression. On the other hand, inter-depot seem to prevail over intra-depot differences in the ASC gene expression assets and network functions, contributing to the high degree of specificity of Sc and V adipose tissue in humans.


European Journal of Human Genetics | 2003

Juvenile hemochromatosis locus maps to chromosome 1q in a French Canadian population

Sylvain R Rivard; Carmela Lanzara; Doria Grimard; Massimo Carella; Hervey Simard; Romina Ficarella; Raynald Simard; Adamo Pio D'Adamo; Claude Férec; Clara Camaschella; Cathrine Mura; Antonella Roetto; Marc De Braekeleer; Lucien Bechner; Paolo Gasparini

Juvenile hemochromatosis (JH) is a rare autosomal recessive disorder that causes iron overload. In the French Canadian region of Saguenay Lac-Saint-Jean the worldwide largest cohort of JH cases has been identified. Here, we report the mapping of this large cohort of cases to the HFE2 locus on chromosome 1q. A maximum multipoint location score of 7.02 was observed with marker D1S2344. A common ancestral haplotype, showing the presence of a founder effect, was identified. The analysis of recombinants allowed us to confirm the JH candidate region.


Biochimica et Biophysica Acta | 2009

Are MYO1C and MYO1F associated with hearing loss

Cristina Zadro; Maria Stella Alemanno; Emanuele Bellacchio; Romina Ficarella; Francesca Donaudy; Salvatore Melchionda; Leopoldo Zelante; Raquel Rabionet; Nele Hilgert; Xavier Estivill; Guy Van Camp; Paolo Gasparini; Massimo Carella

The role of myosins in the pathogenesis of hearing loss is well established: five genes encoding unconventional myosins and two genes encoding nonmuscle conventional myosins have so far been described to be essential for normal auditory function and mutations in these genes associated with hearing impairment. To better understand the role of this gene family we performed a mutational screening on two candidate genes, MYO1C and MYO1F, analyzing hundreds of patients, affected by bilateral sensorineural hearing loss and coming from different European countries. This research activity led to the identification of 6 heterozygous missense mutations in MYO1C and additional 5 heterozygous missense mutations in MYO1F. Homology modelling suggests that some of these mutations could have a potential influence on the structure of the ATP binding site and could probably affect the ATPase activity or the actin binding process of both myosins. This study suggests a role of the above mentioned myosin genes in the pathogenesis of hearing loss.


European Journal of Human Genetics | 2004

A second locus mapping to 2q35–36 for familial pseudohyperkalaemia

Massimo Carella; Adamo Pio D'Adamo; Sabine Grootenboer-Mignot; Marie Christine Vantyghem; Laura Esposito; Angela D'Eustacchio; Romina Ficarella; Gordon W. Stewart; Paolo Gasparini; Jean Delaunay; Achille Iolascon

Familial pseudohyperkalaemia (FP) is a symptomless, dominantly inherited red cell trait, which shows a ‘passive leak’ of K+ cations into the plasma upon storage of blood at room temperature (or below). There are no haematological abnormalities. The loss of K+ is due to a change in the temperature dependence of the leak. The Scottish case initially described, FP Edinburgh, maps to 16q23-qter. Here we studied a large kindred of Flemish descent with FP, termed FP Lille, which was phenotypically identical to the Edinburgh FP. In FP Lille, however, the responsible locus mapped to 2q35–36, with a Lod score of 8.46 for marker D2S1338. We infer that FP Edinburgh and FP Lille, although they are phenocopies of one another, stem from two distinct loci, FP1 (16q23-qter) and FP2 (2q35–36), respectively. This duality hints at the possibility that the protein mediating the leak might be a heterodimer. No mutation was found in three plausibly candidate genes: the KCNE4 gene, the TUBA1 gene and a predicted gene located in genomic contig NT_005403.


Expert Reviews in Molecular Medicine | 2012

Human adipose tissue stem cells: relevance in the pathophysiology of obesity and metabolic diseases and therapeutic applications

Angelo Cignarelli; Sebastio Perrini; Romina Ficarella; Alessandro Peschechera; Pasquale Nigro; Francesco Giorgino

Stem cells are unique cells exhibiting self-renewing properties and the potential to differentiate into multiple specialised cell types. Totipotent or pluripotent stem cells are generally abundant in embryonic or fetal tissues, but the use of discarded embryos as sources of these cells raises challenging ethical problems. Adult stem cells can also differentiate into a wide variety of cell types. In particular, adult adipose tissue contains a pool of abundant and accessible multipotent stem cells, designated as adipose-derived stem cells (ASCs), that are able to replicate as undifferentiated cells, to develop as mature adipocytes and to differentiate into multiple other cell types along the mesenchymal lineage, including chondrocytes, myocytes and osteocytes, and also into cells of endodermal and neuroectodermal origin, including beta-cells and neurons, respectively. An impairment in the differentiation potential and biological functions of ASCs may contribute to the development of obesity and related comorbidities. In this review, we summarise different aspects of the ASCs with special reference to the isolation and characterisation of these cell populations, their relation to the biochemical features of the adipose tissue depot of origin and to the metabolic characteristics of the donor subject and discuss some prospective therapeutic applications.


Blood Cells Molecules and Diseases | 2003

Congenital dyserythropoietic anemia type II: exclusion of seven candidate genes.

Carmela Lanzara; Romina Ficarella; Angela Totaro; Xin Chen; Roberta Roberto; Silverio Perrotta; Carla Lasalandra; Paolo Gasparini; Achille Iolascon; Massimo Carella

Congenital dyserythropoietic anemias (CDA) are genetic disorders characterized by anemia and ineffective erythropoiesis. Three main types of CDA have been distinguished: CDA I, CDAII and CDA III, whose loci have been already mapped. After the identification of the locus for CDA II, also known as HEMPAS (hereditary erythroblast multinuclearity with positive acidified serum test), on the long arm of chromosome 20 (20q11.2) we have analyzed by a mutational search seven candidate genes in a large series of CDA II patients. In particular, the following genes have been investigated: integrin beta 4 binding protein, ribophorin II, ubiquitin protein ligase ITCH, mannosil-oligosaccharide alpha-1,2-mannosidase like protein, erythrocyte protein band 4.1 like protein, zinc finger protein PLAGL2, and finally novel zinc finger protein. None of them resulted as the causative gene but several protein variants and DNA polymorphisms have been identified. These data exclude the role of the above mentioned genes in causing CDA II and add further information in the process of cloning the CDA II gene.


Biochimica et Biophysica Acta | 2014

Regulation of the biogenesis of OXPHOS complexes in cell transition from replicating to quiescent state: involvement of PKA and effect of hydroxytyrosol.

Anna Signorile; Loris Micelli; Domenico De Rasmo; Arcangela Santeramo; Francesco Papa; Romina Ficarella; Giuliano Gattoni; Salvatore Scacco; Sergio Papa

A study is presented on the expression of mitochondrial oxidative phosphorylation complexes in exponentially growing and serum-starved, quiescent human fibroblast cultures. The functional levels of respiratory complexes I and III and complex V (adenosine triphosphate (ATP) synthase) were found to be severely depressed in serum-starved fibroblasts. The depression of oxidative phosphorylation system (OXPHOS) complexes was associated with reduced levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and the down-stream nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factors (TFAM). In serum-starved fibroblasts decrease of the catalytic activity of AMP cyclic dependent protein kinase (PKA) and phosphorylation of cAMP response element-binding protein (CREB), the transcription coactivator of the PGC-1α gene, was found. Hydroxytyrosol prevented the decline in the expression of the PGC-1α transcription cascade of OXPHOS complexes in serum-starved fibroblast cultures. The positive effect of HT was associated with activation of PKA and CREB phosphorylation. These results show involvement of PKA, CREB and PGC-1α in the regulation of OXPHOS in cell transition from the replicating to the quiescent state.


Archives of Physiology and Biochemistry | 2009

Human adipose tissue precursor cells: a new factor linking regulation of fat mass to obesity and type 2 diabetes?

Sebastio Perrini; Angelo Cignarelli; Romina Ficarella; Luigi Laviola; Francesco Giorgino

The current epidemic of obesity has caused a surge of interest in the study of the mechanisms regulating adipose tissue formation. It has been observed that adipose tissue contains a pool of adult stem cells with multipotent properties, which provide for the physiological cell turnover, and can be isolated and potentially utilized for tissue engineering and regenerative medical applications. These “stromal” cells exhibit pre-adipocyte characteristics, can be isolated from adipose tissue of adult subjects, propagated in vitro, and induced to differentiate into adipocytes. Different populations of multi-potent precursor cells can be isolated from human fat fragments. Thus, adipose precursors cells are a heterogeneous cells population, consisting of fibroblast-like multi-potential stem cells generally termed adipose-derived stem cells (ASCs). In this review, we discuss some aspects of ASCs basic biology, the methodology involved in ASCs isolation and culture, and some implications of ASCs availability for the understanding of metabolic diseases in humans.

Collaboration


Dive into the Romina Ficarella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Carella

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge