Romina P. Pizzolitto
National University of Cordoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Romina P. Pizzolitto.
International Journal of Food Microbiology | 2012
Romina P. Pizzolitto; Mario A. Salvano; A. Dalcero
The objectives of this investigation were to evaluate the ability of Saccharomyces cerevisiae CECT 1891 and Lactobacillus acidophilus 24 to remove fumonisin B(1) (FB(1)) from liquid medium; to determine the nature of the mechanism involved in FB(1)-microorganism interaction and to analyze whether the presence of aflatoxin B(1) (AFB(1)) interferes with the removal of FB(1) and vice versa. The results obtained indicated that: (i) both microorganisms were able to remove FB(1) from liquid medium; (ii) the removal was a fast and reversible process; (iii) cell viability was not necessary; (iv) the amount of FB(1) removed was both toxin- and microorganism concentration-dependent; (v) the process did not involve chemical modification of FB(1) molecules; and (vi) cell wall structural integrity of the microorganisms was required for FB(1) removal. Consequently, we propose that the mechanism involved in the removal of FB(1) is a physical adsorption (physisorption) of the toxin molecule to cell wall components of the microorganisms. It is highly probable that FB(1) and AFB(1) co-occur in contaminated foods, since the fungal genera Aspergillus and Fusarium frequently occur simultaneously. Therefore, we analyzed whether the presence of AFB(1) interferes with the removal of FB(1) by the microorganisms previously evaluated, and vice versa. Studies of co-occurrence of both mycotoxins clearly showed that they did not compete for binding sites on the microorganism cell wall and the presence of one toxin did not modify the efficiency of the organism in the removal of the other mycotoxin. These findings may be useful for optimization of mycotoxin binding and provide an important contribution to research on microorganisms with ability to remove these secondary metabolites.
Journal of Applied Microbiology | 2014
Mauro Nicolas Gallucci; Maria Evangelina Carezzano; M. M. Oliva; Mirta S. Demo; Romina P. Pizzolitto; María P. Zunino; Julio A. Zygadlo; José S. Dambolena
To evaluate the antifungal activity and to analyse the structure–activity relationship of eleven natural phenolic compounds against four Candida species which are resistant to fluconazole.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2012
Romina P. Pizzolitto; M.R. Armando; Mariana Combina; L.R. Cavaglieri; A. Dalcero; Mario A. Salvano
In this study the aflatoxin B1 (AFB1) removal capacity, the tolerance to salivary and gastrointestinal conditions, autoaggregation and coaggregation with pathogenic bacteria of Saccharomyces cerevisiae strains isolated from broiler feces, were evaluated. Only four of twelve isolated strains were identified as Saccharomyces cerevisiae using molecular techniques. The results obtained in AFB1 binding studies indicated that the amount of AFB1 removed was both strain and mycotoxin-concentration dependent. Therefore, a theoretical model was applied in order to select the most efficient strain to remove AFB1 in a wide range of mycotoxin concentration. The results indicated that S. cerevisiae 08 and S. cerevisiae 01 strains were the most efficient microorganisms in the mycotoxin removal. Viability on simulated salivary and gastrointestinal conditions was investigated and S. cerevisiae 08 strain showed the best results, achieving 98% of total survival whereas S. cerevisiae 01 reached only 75%. Autoaggregation and coaggregation assays showed S. cerevisiae 08 as the most appropriate strain, mainly because it was the unique strain able to coaggregate with the four bacterial pathogens assayed. Consequently, S. cerevisiae 08 is the best candidate for future in vivo studies useful to prevent aflatoxicosis. Further quantitative in vitro and in vivo studies are required to evaluate the real impact of yeast-binding activity on the bioavailability of AFB1 in poultry. However, this study could be useful in selecting efficient strains in terms of AFB1 binding and provide an important contribution to research into microorganisms with potential probiotic effects on the host.
Archive | 2011
Romina P. Pizzolitto; Dante Javier Bueno; M.R. Armando; L.R. Cavaglieri; A. M. Dalcero; Mario A. Salvano
Mycotoxins are toxic fungal metabolites found as contaminants in many agricultural products. Feeds contaminated with mycotoxins have a health risk to animals and, as a consequence, may cause big economical losses due to the low efficacy of animal husbandry (Richard, 2007). In addition, directly or indirectly (animal by-products) contaminated foods may also have a health risk to humans (CAST, 2003; Hussein & Brasel, 2001; Wild, 2007). Aflatoxins (AFs), a group of potent mycotoxins with mutagnic, carcinogenic, teratogenic, hepatotoxic and immunosupresive properties, are of particular importance because of their major occurrence and adverse effects on animal and human health, generalized as “aflatoxicosis” (CAST, 2003; Hussein & Brasel, 2001; Magnoli et al., 2011). The AFs are produced by genus Aspergillus, mainly A. flavus, A. parasiticus and A. nomius, that grow on a variety of raw material during growth, harvest, storage and transportation of for example, the cereal used in the preparation of food and feed commodities (Ito et al., 2001; Kurtzman et al., 1987; Payne, 1998; Pereyra et al., 2010). The investigation of strategies to prevent the presence of AFs in foods, as well as, to eliminate, inactivate or reduce the bio-availability of these mycotoxins in contaminated products include physical, chemical, and biological methods (Bueno et al., 2001; CAST, 2003; Kabak et al., 2006). Limitations such as the loss of nutritional and sensory qualities of the product, the expensive equipment required for these techniques and the impossibility to guarantee the desired results, have allowed us to consider the hipothesis that foods and feeds can always be potentially contaminated with aflatoxins. For instance, in the poultry industry aflatoxin B1 (AFB1) is almost an unavoidable feed contaminant and levels from 0200 ng/g have been reported (Dalcero et al., 1997). On the other hand, it is known that lactic acid bacteria (LAB) and some yeast, principally Saccharomyces cerevisiae, are capable to bind AFs in liquid media, apparently to cell wall components, polysaccharides and peptidoglycans of LAB (Haskard et al., 2001; Latinen et al., 2004) and glucomannans of yeast (Karaman et al., 2005; Raju & Devegowda, 2000) and
Poultry Science | 2013
Romina P. Pizzolitto; M.R. Armando; Mario A. Salvano; A. Dalcero; Carlos Alberto da Rocha Rosa
Aflatoxins (AF) are the most important mycotoxins produced by toxigenic strains of various Aspergillus spp. Biological decontamination of mycotoxins using microorganisms is a well-known strategy for the management of mycotoxins in feeds. Saccharomyces cerevisiae strains have been reported to bind aflatoxin B1 (AFB1). The aim of this study was to evaluate the ability of S. cerevisiae CECT 1891 in counteracting the deleterious effects of AFB1 in broiler chicks. Experimental aflatoxicosis was induced in 6-d-old broilers by feeding them 1.2 mg of AFB1/kg of feed for 3 wk, and the yeast strain was administrated in feed (10(10) cells/kg), in the drinking water (5 × 10(9) cells/L), or a combination of both treatments. A total of 160 chicks were randomly divided into 8 treatments (4 repetitions per treatment). Growth performance was measured weekly from d 7 to 28, and serum biochemical parameters, weights, and histopathological examination of livers were determined at d 28. The AFB1 significantly decreased the BW gain, feed intake, and impaired feed conversion rate. Moreover, AFB1 treatment decreased serum protein concentration and increased liver damage. The addition of S. cerevisiae strain to drinking water, to diets contaminated with AFB1, showed a positive protection effect on the relative weight of the liver, histopathology, and biochemical parameters. Furthermore, dietary addition of the yeast strain to drinking water alleviated the negative effects of AFB1 on growth performance parameters. In conclusion, this study suggests that in feed contaminated with AFB1, the use of S. cerevisiae is an alternative method to reduce the adverse effects of aflatoxicosis. Thus, apart from its excellent nutritional value, yeast can also be used as a mycotoxin adsorbent.
Psyche: A Journal of Entomology | 2016
José S. Dambolena; María P. Zunino; Jimena M. Herrera; Romina P. Pizzolitto; Vanessa A. Areco; Julio A. Zygadlo
Many insects affect food production and human health, and in an attempt to control these insects the use of synthetic insecticides has become widespread. However, this has resulted in the development of resistance in these organisms, human diseases, contamination of food, and pollution of the environment. Plants natural products and essential oil components such as terpenes and phenylpropenes have been shown to have a significant potential for insect control. However, the molecular properties related to their insecticidal activity are not well understood. The purpose of this review is to provide an overview of the toxicity of terpene compounds against three insects of importance to human health: lice, cockroaches, and Triatominae bugs and to evaluate which molecular descriptors are important in the bioactivity of terpenes. For the insects studied, quantitative structure-activity relationship (QSAR) studies were performed in order to predict the insecticidal activity of terpene compounds. The obtained QSAR models indicated that the activity of these compounds depends on their ability to reach the targets and to interact with them. The QSAR analysis can be used to predict the bioactivities of other structurally related molecules. Our findings may provide an important contribution in the search for new compounds with insecticidal activity.
Journal of Chemistry | 2015
Romina P. Pizzolitto; Carla L. Barberis; José S. Dambolena; Jimena M. Herrera; María P. Zunino; Carina E. Magnoli; Héctor R. Rubinstein; Julio A. Zygadlo; A. Dalcero
Considering the impact of Aspergillus species on crops, it appears to be highly desirable to apply strategies to prevent their growth, as well as to eliminate or reduce their presence in food products. For this reason, the aims of this investigation were to evaluate the effects of ten natural phenolic compounds on the Aspergillus parasiticus growth and to determine which physicochemical properties are involved in the antifungal activity. According to the results of minimum inhibitory concentration (MIC) values of the individual compounds, isoeugenol, carvacrol, and thymol were the most active phenolic components (1.26 mM, 1.47 mM, and 1.50 mM, resp.), followed by eugenol (2.23 mM). On the other hand, creosol, p-cresol, o-cresol, m-cresol, vanillin, and phenol had no effects on fungal development. Logarithm of the octanol/water partition coefficient (log P), refractivity index (RI), and molar volume (MV) were demonstrated to be the descriptors that best explained the antifungal activity correlated to lipophilicity, reactivity of the components, and steric aspect. These findings make an important contribution to the search for new compounds with antifungal activity.
Journal of Agricultural and Food Chemistry | 2015
María P. Zunino; Jimena M. Herrera; Romina P. Pizzolitto; Héctor R. Rubinstein; Julio A. Zygadlo; José S. Dambolena
New agronomic practices and technology enabled Argentina a larger production of cereal grains, reaching a harvest yield of 26.5 million metric tons of maize, of which, about 40% was exported. However, much of the maize production is lost annually by the attack of fungi and insects (2.6 million tons). In this study, the antifungal effect of selected volatiles on Fusarium verticillioides, its mycotoxin production, and the repellent and insecticidal activities against the weevill Sithophilus zeamais, an insect vector of F. verticillioides, were evaluated. The compounds tested were (2E)-2-hexenal, (2E)-2-nonenal, (2E,6Z)-2,6-nonadienal, 1-pentanol, 1-hexanol, 1-butanol, 3-methyl-1-butanol, pentanal, 2-decanone, and 3-decanone, which occur in the blend of volatile compounds emitted by various cereal grains. The most active antifungals were the aldehydes (2E)-2-nonenal, (2E)-2-hexenal, and (2E,6Z)-2,6-nonadienal (minimum inhibitory concentration values of <0.03, 0.06, and 0.06 mM, respectively). The occurrence of fumonisin B1 also was prevented because these compounds completely inhibited fungal growth. The best insecticidal fumigant activities against the maize weevil were shown by 2-decanone and 3-decanone (lethal concentration ≤ 54.6 μL/L (<0.28 mM)). Although, all tested compounds showed repellent activity against S. zeamais at a concentration of 4 μL/L, (2E,6Z)-2,6-nonadienal was the most active repellent compound. These results demonstrate the potential of (2E,6Z)-2,6-nonadienal to be used as a natural alternative to synthetic pesticides on F. verticillioides and S. zeamais.
Microorganisms | 2015
Romina P. Pizzolitto; Jimena M. Herrera; José S. Dambolena; María P. Zunino; Mauro Nicolas Gallucci; Julio A. Zygadlo
Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR) studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87) affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05). The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001) against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize.
Industrial Crops and Products | 2015
Jimena M. Herrera; María P. Zunino; José S. Dambolena; Romina P. Pizzolitto; Nicolás A. Gañán; Enrique I. Lucini; Julio A. Zygadlo