Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romke Bron is active.

Publication


Featured researches published by Romke Bron.


Gastroenterology | 2014

The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice

TinaMarie Lieu; Gihan Jayaweera; Peishen Zhao; Daniel P. Poole; Dane D. Jensen; Megan S. Grace; Peter McIntyre; Romke Bron; Yvette M. Wilson; Matteus Krappitz; Silke Haerteis; Christoph Korbmacher; Martin Steinhoff; Romina Nassini; Serena Materazzi; Pierangelo Geppetti; Carlos U. Corvera; Nigel W. Bunnett

BACKGROUND & AIMS Patients with cholestatic disease have increased systemic concentrations of bile acids (BAs) and profound pruritus. The G-protein-coupled BA receptor 1 TGR5 (encoded by GPBAR1) is expressed by primary sensory neurons; its activation induces neuronal hyperexcitability and scratching by unknown mechanisms. We investigated whether the transient receptor potential ankyrin 1 (TRPA1) is involved in BA-evoked, TGR5-dependent pruritus in mice. METHODS Co-expression of TGR5 and TRPA1 in cutaneous afferent neurons isolated from mice was analyzed by immunofluorescence, in situ hybridization, and single-cell polymerase chain reaction. TGR5-induced activation of TRPA1 was studied in in HEK293 cells, Xenopus laevis oocytes, and primary sensory neurons by measuring Ca(2+) signals. The contribution of TRPA1 to TGR5-induced release of pruritogenic neuropeptides, activation of spinal neurons, and scratching behavior were studied using TRPA1 antagonists or Trpa1(-/-) mice. RESULTS TGR5 and TRPA1 protein and messenger RNA were expressed by cutaneous afferent neurons. In HEK cells, oocytes, and neurons co-expressing TGR5 and TRPA1, BAs caused TGR5-dependent activation and sensitization of TRPA1 by mechanisms that required Gβγ, protein kinase C, and Ca(2+). Antagonists or deletion of TRPA1 prevented BA-stimulated release of the pruritogenic neuropeptides gastrin-releasing peptide and atrial natriuretic peptide B in the spinal cord. Disruption of Trpa1 in mice blocked BA-induced expression of Fos in spinal neurons and prevented BA-stimulated scratching. Spontaneous scratching was exacerbated in transgenic mice that overexpressed TRG5. Administration of a TRPA1 antagonist or the BA sequestrant colestipol, which lowered circulating levels of BAs, prevented exacerbated spontaneous scratching in TGR5 overexpressing mice. CONCLUSIONS BAs induce pruritus in mice by co-activation of TGR5 and TRPA1. Antagonists of TGR5 and TRPA1, or inhibitors of the signaling mechanism by which TGR5 activates TRPA1, might be developed for treatment of cholestatic pruritus.


Neuroscience | 2011

Investigation of the presence of ghrelin in the central nervous system of the rat and mouse

John B. Furness; Billie Hunne; N. Matsuda; L. Yin; D. Russo; Ikuo Kato; Mineko Fujimiya; M. Patterson; Janet L. McLeod; Zane B. Andrews; Romke Bron

Ghrelin and ghrelin receptor agonist have effects on central neurons in many locations, including the hypothalamus, caudal brain stem, and spinal cord. However, descriptions of the distributions of ghrelin-like immunoreactivity in the CNS in published work are inconsistent. We have used three well-characterized anti-ghrelin antibodies, an antibody to the unacylated form of ghrelin, and a ghrelin peptide assay in rats, mice, ghrelin knockout mice, and ghrelin receptor reporter mice to re-evaluate ghrelin presence in the rodent CNS. The stomach served as a positive control. All antibodies were effective in revealing gastric endocrine cells. However, no specific staining could be found in the brain or spinal cord. Concentrations of antibody 10 to 30 times those effective in the stomach bound to nerve cells in rat and mouse brain, but this binding was not reduced by absorbing concentrations of ghrelin peptide, or by use of ghrelin gene knockout mice. Concentrations of ghrelin-like peptide, detected by enzyme-linked immunosorbent assay in extracts of hypothalamus, were 1% of gastric concentrations. Ghrelin receptor-expressing neurons had no adjacent ghrelin immunoreactive terminals. It is concluded that there are insignificant amounts of authentic ghrelin in neurons in the mouse or rat CNS and that ghrelin receptor-expressing neurons do not receive synaptic inputs from ghrelin-immunoreactive nerve terminals in these species.


Gastroenterology | 2011

Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine.

Daniel P. Poole; Juan-Carlos Pelayo; Fiore Cattaruzza; Yien–Ming Kuo; Gregory Gai; Jonathon V. Chiu; Romke Bron; John B. Furness; Eileen F. Grady; Nigel W. Bunnett

BACKGROUND & AIMS Transient receptor potential ankyrin (TRPA) 1, an excitatory ion channel expressed by sensory neurons, mediates somatic and visceral pain in response to direct activation or noxious mechanical stimulation. Although the intestine is routinely exposed to irritant alimentary compounds and inflammatory mediators that activate TRPA1, there is no direct evidence for functional TRPA1 receptors on enteric neurons, and the effects of TRPA1 activation on intestinal function have not been determined. We characterized expression of TRPA1 by enteric neurons and determined its involvement in the control of intestinal contractility and transit. METHODS TRPA1 expression was characterized by reverse-transcription polymerase chain reaction and immunofluorescence analyses. TRPA1 function was examined by Ca(2+) imaging and by assays of contractile activity and transit. RESULTS We detected TRPA1 messenger RNA in the mouse intestine and TRPA1 immunoreactivity in enteric neurons. The cecum and colon had immunoreactivity for neuronal TRPA1, but the duodenum did not. TRPA1 immunoreactivity was also detected in inhibitory motoneurons and descending interneurons, cholinergic neurons, and intrinsic primary afferent neurons. TRPA1 activators, including cinnamaldehyde, allyl isothiocyanate (AITC), and 4-hydroxynonenal, increased [Ca(2+)](i) in myenteric neurons. These were reduced by a TRPA1 antagonist (HC-030031) or deletion of Trpa1. TRPA1 activation inhibited contractility of the segments of colon but not stomach or small intestine of Trpa1(+/+) but not Trpa1(-/-) mice; this effect was reduced by tetrodotoxin or N(G)-nitro-l-arginine methyl ester. Administration of AITC by gavage did not alter gastric emptying or small intestinal transit, but luminal AITC inhibited colonic transit via TRPA1. CONCLUSIONS Functional TRPA1 is expressed by enteric neurons, and activation of neuronal TRPA1 inhibits spontaneous neurogenic contractions and transit of the colon.


Neuroscience | 2010

Functional and in situ hybridization evidence that preganglionic sympathetic vasoconstrictor neurons express ghrelin receptors

Dorota Ferens; L. Yin; Romke Bron; Billie Hunne; K. Ohashi-Doi; Pd Kitchener; Gareth J. Sanger; Jason Witherington; Yasutake Shimizu; John B. Furness

Agonists of ghrelin receptors can lower or elevate blood pressure, and it has been suggested that the increases in blood pressure are caused by actions at receptors in the spinal cord. However, this has not been adequately investigated, and the locations of neurons in the spinal cord that express ghrelin receptors, through which blood pressure increases may be exerted, are not known. We investigated the effects within the spinal cord of two non-peptide ghrelin receptor agonists, GSK894490 and CP464709, and two peptide receptor agonists, ghrelin and des-acyl ghrelin, and we used polymerase chain reaction (PCR) and in situ hybridization to examine ghrelin receptor expression. I.v. application of the non-peptide ghrelin receptor agonists caused biphasic changes in blood pressure, a brief drop followed by a blood pressure increase that lasted several minutes. The blood pressure rise, but not the fall, was antagonized by i.v. hexamethonium. Application of these agonists or ghrelin peptide directly to the spinal cord caused only a blood pressure increase. Des-acyl ghrelin had no significant action. The maximum pressor effects of agonists occurred with application at spinal cord levels T9 to T12. Neither i.v. nor spinal cord application of the agonists had significant effect on heart rate or the electrocardiogram. Ghrelin receptor gene expression was detected by PCR and in situ hybridization. In situ hybridization localized expression to neurons, including autonomic preganglionic neurons of the intermediolateral cell columns at all levels from T3 to S2. The numbers of ghrelin receptor expressing neurons in the intermediolateral cell columns were similar to the numbers of nitric oxide synthase positive neurons, but there was little overlap between these two populations. We conclude that activation of excitatory ghrelin receptors on sympathetic preganglionic neurons increases blood pressure, and that decreases in blood pressure caused by ghrelin agonists are mediated through receptors on blood vessels.


Cell and Tissue Research | 2014

Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine.

Hyun-Jung Cho; Brid Callaghan; Romke Bron; David M. Bravo; John B. Furness

TRPA1 is an ion channel that detects specific chemicals in food and also transduces mechanical, cold and chemical stimulation. Its presence in sensory nerve endings is well known and recent evidence indicates that it is expressed by some gastrointestinal enteroendocrine cells (EEC). The purpose of the present work is to identify and quantify EEC that express TRPA1 in the mouse gastrointestinal tract. Combined in situ hybridisation histochemistry for TRPA1 and immunofluorescence for EEC hormones was used. TRPA1 expressing EEC were common in the duodenum and jejunum, were rare in the distal small intestine and were absent from the stomach and large intestine. In the duodenum and jejunum, TRPA1 occurred in EEC that contained both cholecystokinin (CCK) and 5-hydroxytryptamine (5HT) and in a small number of cells expressing 5HT but not CCK. TRPA1 was absent from CCK cells that did not express 5HT and from EEC containing glucagon-like insulinotropic peptide. Thus TRPA1 is contained in very specific EEC populations. It is suggested that foods such as garlic and cinnamon that contain TRPA1 stimulants may aid digestion by facilitating the release of CCK.


The Journal of Comparative Neurology | 2014

Piezo2 expression in corneal afferent neurons

Romke Bron; Rhiannon J. Wood; James A. Brock; Jason J. Ivanusic

Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well‐defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold‐sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non‐calcitonin gene‐related peptide (CGRP)‐immunoreactive (‐IR), medium‐ to large‐sized neurons that are NF200‐IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold‐sensing neurons. We also noted that TRPM8‐IR or CGRP‐IR corneal afferent neurons are almost entirely small and lack NF200‐IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold‐sensing neurons, and is likely confined to a subpopulation of pure mechano‐nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli. J. Comp. Neurol. 522:2967–2979, 2014.


Clinical and Experimental Pharmacology and Physiology | 2009

Rhythm of digestion: keeping time in the gastrointestinal tract

Romke Bron; John B. Furness

1. The best characterized mammalian circadian rhythms follow a light‐entrained central master pacemaker in the suprachiasmatic nucleus and are associated with fluctuations in the activities of clock genes, including Clock, Bmal1, Per and Cry, the products of which bind to sequences in the promoters of effector genes. This is the central clock.


Frontiers in Neuroanatomy | 2015

Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations

Abdulhakeem S. Alamri; Romke Bron; James A. Brock; Jason J. Ivanusic

The cornea is innervated by three main functional classes of sensory neurons: polymodal nociceptors, pure mechano-nociceptors and cold-sensing neurons. Here we explored transient receptor potential cation channel subfamily V member 1 (TRPV1) expression in guinea pig corneal sensory neurons, a widely used molecular marker of polymodal nociceptors. We used retrograde tracing to identify corneal afferent neurons in the trigeminal ganglion (TG) and double label in situ hybridization and/or immunohistochemistry to determine their molecular profile. In addition, we used immunohistochemistry to reveal the neurochemistry and structure of TRPV1 expressing nerve endings in the corneal epithelium. Approximately 45% of corneal afferent neurons expressed TRPV1, 28% expressed Piezo2 (a marker of putative pure mechano-nociceptors) and 8% expressed the transient receptor potential cation channel subfamily M member 8 (TRPM8; a marker of cold-sensing neurons). There was no co-expression of TRPV1 and Piezo2 in corneal afferent neurons, but 6% of TRPV1 neurons co-expressed TRPM8. The TRPV1 expressing corneal afferent neurons could be divided into three subpopulations on the basis of calcitonin gene-related peptide (CGRP) and/or or glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) co-expression. In the corneal epithelium, the TRPV1 axons that co-expressed CGRP and GFRα3 ended as simple unbranched endings in the wing cell layer. In contrast, those that only co-expressed GFRα3 had ramifying endings that branched and terminated in the squamous cell layer, whereas those that only co-expressed CGRP had simple endings in the basal epithelium. This study shows that the majority of TRPV1 expressing corneal afferent neurons (>90%) are likely to be polymodal nociceptors. Furthermore, TRPV1 expressing corneal afferent neurons can be subdivided into specific subpopulations based on their molecular phenotype, nerve terminal morphology and distribution in the corneal epithelium.


The Journal of Comparative Neurology | 2013

Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat.

Romke Bron; L. Yin; D. Russo; John B. Furness

There is ambiguity concerning the distribution of neurons that express the ghrelin receptor (GHSR) in the medulla oblongata. In the current study we used a sensitive nonradioactive method to investigate GHSR mRNA distribution by in situ hybridization. Strong expression of the GHSR gene was confirmed in neurons of the facial nucleus (FacN, 7), the dorsal vagal complex (DVC), and the semicompact (but not compact) nucleus ambiguus (AmbSC and AmbC). In addition, expression of GHSR was found in other regions, where it had not been described before. GHSR‐positive neurons were observed in the gustatory rostral nucleus tractus solitarius and in areas involved in vestibulo‐ocular processing (such as the medial vestibular nucleus and the nucleus abducens). GHSR expression was also noted in ventral areas associated with cardiorespiratory control, including the gigantocellular reticular nucleus, the lateral paragigantocellular nucleus, the rostral and caudal ventrolateral medulla, the (pre)‐Bötzinger complex, and the rostral and caudal ventrolateral respiratory group. However, GHSR‐positive neurons in ventrolateral areas did not express markers for cardiovascular presympathetic vasomotor neurons, respiratory propriobulbar rhythmogenic neurons, or sensory interneurons. GHSR‐positive cells were intermingled with catecholamine neurons in the dorsal vagal complex but these populations did not overlap. Thus, the ghrelin receptor occurs in the medulla oblongata in 1) second‐order sensory neurons processing gustatory, vestibulo‐ocular, and visceral sensation; 2) cholinergic somatomotor neurons of the FacN and autonomic preganglionic neurons of the DMNX and AmbSC; 3) cardiovascular neurons in the DVC, Gi, and LPGi; 4) neurons of as yet unknown function in the ventrolateral medulla. J. Comp. Neurol. 521:2680–2702, 2013.


Cell and Tissue Research | 2011

Ghrelin receptors are expressed by distal tubules of the mouse kidney

Gene Venables; Billie Hunne; Romke Bron; Hyun-Jung Cho; James A. Brock; John B. Furness

Ghrelin, a peptide hormone from the stomach, has been recently discovered to reduce sodium excretion from the kidney. Although the effects on the kidney suggest actions in the distal nephron, the sites of expression of ghrelin receptors have not been localised. In the present work we have used a mouse that expresses green fluorescent protein under the control of the ghrelin receptor promoter to locate sites of receptor expression in the kidney. Receptor expression was confined to the straight parts of the distal tubules and the thin limbs of the loops of Henle. No expression was detected in other structures, including the glomeruli, proximal tubules and collecting ducts. Ghrelin receptors were not found in extra-renal or intra-renal arteries, despite observations that ghrelin is a vasodilator. The distribution revealed by in situ hybridisation histochemistry was the same as that revealed by the reporter. In conclusion, ghrelin receptors have a restricted distribution in the kidney. The location in the straight parts of the distal tubules accords with observations that ghrelin promotes sodium retention.

Collaboration


Dive into the Romke Bron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Billie Hunne

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

L. Yin

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge