Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rommel I. Tawatao is active.

Publication


Featured researches published by Rommel I. Tawatao.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7

Tomoko Hayashi; Christine S. Gray; Michael Chan; Rommel I. Tawatao; Lisa Ronacher; Maureen A. McGargill; Sandip K. Datta; Dennis A. Carson; Maripat Corr

Activation of Toll-like receptors (TLR) contributes to the initiation and maintenance of chronic inflammation in autoimmune diseases, yet repeated exposure to a TLR agonist can induce hyporesponsiveness to subsequent TLR stimulation. Here, we used a synthetic TLR7 agonist, 9-benzyl-8-hydroxy-2-(2-methoxyethoxy) adenine (SM360320, 1V136) to study TLR7 induced attenuation of inflammatory responses and its application to autoimmune diseases. Repeated low dose administration of this TLR7 agonist induced hyporesponsiveness or tolerance to TLR2, -7, and -9 activators and limited the course of neural inflammation in an experimental allergic encephalomyelitis model. The hyporesponsiveness did not depend on T or B lymphocytes, but did require bone marrow derived cells. In addition, TLR7 tolerance reduced inflammation in a passive antibody mediated arthritis model. TLR7 tolerance did not cause global immunosuppression, because susceptibility to Listeria monocytogenes infection was not altered. The mechanism of TLR7 tolerance involved the up-regulation of 2 inhibitors of TLR signaling: Interleukin 1 Receptor Associated Kinase (IRAK) M, and Src homology 2 domain-containing inositol polyphosphate phosphatase (SHIP)-1. These findings suggest that induction of TLR7 tolerance might be a new therapeutic approach to subdue inflammation in autoimmune diseases.


Journal of Medicinal Chemistry | 2013

Identification of Substituted Pyrimido[5,4-b]indoles as Selective Toll-Like Receptor 4 Ligands

Michael Chan; Tomoko Hayashi; Richard D. Mathewson; Afshin Nour; Yuki Hayashi; Shiyin Yao; Rommel I. Tawatao; Brian Crain; Igor Tsigelny; Valentina L. Kouznetsova; Karen Messer; Minya Pu; Maripat Corr; Dennis A. Carson; Howard B. Cottam

A cell-based high-throughput screen to identify small molecular weight stimulators of the innate immune system revealed substituted pyrimido[5,4-b]indoles as potent NFκB activators. The most potent hit compound selectively stimulated Toll-like receptor 4 (TLR4) in human and mouse cells. Synthetic modifications of the pyrimido[5,4-b]indole scaffold at the carboxamide, N-3, and N-5 positions revealed differential TLR4 dependent production of NFκB and type I interferon associated cytokines, IL-6 and interferon γ-induced protein 10 (IP-10) respectively. Specifically, a subset of compounds bearing phenyl and substituted phenyl carboxamides induced lower IL-6 release while maintaining higher IP-10 production, skewing toward the type I interferon pathway. Substitution at N-5 with short alkyl substituents reduced the cytotoxicity of the leading hit compound. Computational studies supported that active compounds appeared to bind primarily to MD-2 in the TLR4/MD-2 complex. These small molecules, which stimulate innate immune cells with minimal toxicity, could potentially be used as adjuvants or immune modulators.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Mast cell-dependent anorexia and hypothermia induced by mucosal activation of Toll-like receptor 7

Tomoko Hayashi; Howard B. Cottam; Michael Chan; Guangyi Jin; Rommel I. Tawatao; Brian Crain; Lisa Ronacher; Karen Messer; Dennis A. Carson; Maripat Corr

Systemic viral infections produce a highly regulated set of responses in sickness behavior, such as fever, anorexia, and adipsia. Toll-like receptor (TLR)7, activated by viral RNA during infection, potently stimulates the innate and adaptive immune responses that aid in viral clearance. However, the physiological consequences of TLR7 activation have not been thoroughly studied. In these experiments, we used a potent synthetic TLR7 ligand, 9-benzyl-8-hydroxy-2-(2-methoxyethoxy)adenine (SM360320; 1V136), to investigate the consequences of TLR7 activation in genetically defined strains of mice. Administration of the drug by the nasal, intragastric, or intraperitoneal routes caused transient hypophagia, hypodypsia, and hypothermia. Analyses of mutant mouse strains indicated that these effects were dependent on the expression of TLR7, its adaptor protein MyD88, and TNF-alpha, and independent of IL-1beta, IL-6 and cyclo-oxygenase-1 (COX1). Partial roles were also implied for mast cells and COX2. Although plasma TNF-alpha levels were significantly higher after systemic drug delivery, the behavioral effects were maximal when the agent was administered to the mucosa. Tissue and mucosal mast cells are known to express high levels of TLR7 and to rapidly release TNF-alpha upon TLR7 ligation. Mice deficient in tissue mast cells, W/W(v), had significantly less anorexia after TLR7 activation, and this response was restored with mast cell reconstitution. Our results thus suggest that tissue mast cells may play a role in the anorexia induced by mucosal activation of TLR7.


Bioconjugate Chemistry | 2011

Synthesis and Characterization of PEGylated Toll Like Receptor 7 Ligands

Michael Chan; Tomoko Hayashi; Richard D. Mathewson; Shiyin Yao; Christine S. Gray; Rommel I. Tawatao; Kevin Kalenian; Yanmei Zhang; Yuki Hayashi; Fitzgerald Lao; Howard B. Cottam; Dennis A. Carson

Toll-like receptor 7 (TLR7) is located in the endosomal compartment of immune cells. Signaling through TLR7, mediated by the adaptor protein MyD88, stimulates the innate immune system and shapes adaptive immune responses. Previously, we characterized TLR7 ligands conjugated to protein, lipid, or poly(ethylene glycol) (PEG). Among the TLR7 ligand conjugates, the addition of PEG chains reduced the agonistic potency. PEGs are safe in humans and widely used for improvement of pharmacokinetics in existing biologics and some low molecular weight compounds. PEGylation could be a feasible method to alter the pharmacokinetics and pharmacodynamics of TLR7 ligands. In this study, we systematically studied the influence of PEG chain length on the in vitro and in vivo properties of potent TLR7 ligands. PEGylation increased solubility of the TLR7 ligands and modulated protein binding. Adding a 6-10 length PEG to the TLR7 ligand reduced its potency toward induction of interleukin (IL)-6 by murine macrophages in vitro and IL-6 and tumor necrosis factor (TNF) in vivo. However, PEGylation with 18 or longer chain restored, and even enhanced, the agonistic activity of the drug. In human peripheral blood mononuclear cells, similar effects of PEGylation were observed for secretion of proinflammatory cytokines, IL-6, IL-12, TNF-α, IL-1β, and type 1 interferon, as well as for B cell proliferation. In summary, these studies demonstrate that conjugation of PEG chains to a synthetic TLR ligand can impact its potency for cytokine induction depending on the size of the PEG moiety. Thus, PEGylation may be a feasible approach to regulate the pharmacological properties of TLR7 ligands.


Melanoma Research | 2011

Additive melanoma suppression with intralesional phospholipid conjugated TLR7 agonists and systemic IL-2

Tomoko Hayashi; Michael Chan; John T. Norton; Christina Wu; Shiyin Yao; Howard B. Cottam; Rommel I. Tawatao; Maripat Corr; Dennis A. Carson; Gregory A. Daniels

There remains a compelling need for the development of treatments for unresectable melanoma. Agents that stimulate the innate immune response could provide advantages for cell-based therapies. However, there are conflicting reports concerning whether toll-like receptor (TLR) signaling controls tumor growth. The objective of this study was to evaluate the effect of intralesional administration of a TLR7 agonist in melanoma therapy. B16cOVA melanoma was implanted to TLR7−/− mice to evaluate the roles of stromal TLR7 on melanoma growth. To capitalize on the potential deleterious effects of TLR7 stimulation on the tumor growth, we injected melanoma tumor nodules with a newly developed and potent TLR7 agonist. B16 melanoma nodules expanded more rapidly in TLR7-deficient and MyD88−/− mice compared with TLR9−/− and wild type mice. Repeated injections with low doses of unconjugated TLR7 agonist were more effective at attenuating nodule size than a single high dose injection. To improve the efficacy we conjugated the agonist to phospholipid or phospholipids-polyethylene glycol, which retained TLR7 specificity. The phospholipid conjugate was indeed more effective in reducing lesion size. Furthermore, intralesional administration of the phospholipid TLR7 agonist conjugate enhanced the antimelanoma effects of systemic treatment with interleukin (IL)-2 and prolonged the survival of mice compared with IL-2 alone. Our study showed that: (1) TLR7/MyD88 signaling in the stroma is involved in melanoma growth; and (2) intralesional administration of a TLR7 agonist reduces the growth of melanoma nodules and enhances the antimelanoma effects of IL-2.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of substituted 4-aminoquinazolines as selective Toll-like receptor 4 ligands

Afshin Nour; Tomoko Hayashi; Michael Chan; Shiyin Yao; Rommel I. Tawatao; Brian Crain; Igor Tsigelny; Valentina L. Kouznetsova; Alast Ahmadiiveli; Karen Messer; Minya Pu; Maripat Corr; Dennis A. Carson; Howard B. Cottam

The Toll-like receptors (TLRs) are critical components of the innate immune system that regulate immune recognition in part through NF-κB activation. A human cell-based high throughput screen (HTS) revealed substituted 4-aminoquinazolines to be small molecular weight activators of NF-κB. The most potent hit compound predominantly stimulated through the human TLR4/MD2 complex, and had less activity with the mouse TLR4/MD2. There was no activity with other TLRs and the TLR4 activation was MD-2 dependent and CD14 independent. Synthetic modifications of the quinazoline scaffold at the 2 and 4 positions revealed trends in structure-activity relationships with respect to TLR dependent production of the NF-κB associated cytokine IL-8 in human peripheral blood mononuclear cells, as well as IL-6 in mouse antigen presenting cells. Furthermore, the hit compound in this series also activated the interferon signaling pathway resulting in type I interferon production. Substitution at the O-phenyl moiety with groups such as bromine, chlorine and methyl resulted in enhanced immunological activity. Computational studies indicated that the 4-aminoquinazoline compounds bind primarily to human MD-2 in the TLR4/MD-2 complex. These small molecules, which preferentially stimulate human rather than mouse innate immune cells, may be useful as adjuvants or immunotherapeutic agents.


PLOS ONE | 2012

Treatment of autoimmune inflammation by a TLR7 ligand regulating the innate immune system.

Tomoko Hayashi; Shiyin Yao; Brian Crain; Michael Chan; Rommel I. Tawatao; Christine S. Gray; Linda Vuong; Fitzgerald Lao; Howard B. Cottam; Dennis A. Carson; Maripat Corr

The Toll-like receptors (TLR) have been advocated as attractive therapeutic targets because TLR signaling plays dual roles in initiating adaptive immune responses and perpetuating inflammation. Paradoxically, repeated stimulation of bone marrow mononuclear cells with a synthetic TLR7 ligand 9-benzyl-8-hydroxy-2-(2-methoxyethoxy) adenine (called 1V136) leads to subsequent TLR hyporesponsiveness. Further studies on the mechanism of action of this pharmacologic agent demonstrated that the TLR7 ligand treatment depressed dendritic cell activation, but did not directly affect T cell function. To verify this mechanism, we utilized experimental allergic encephalitis (EAE) as an in vivo T cell dependent autoimmune model. Drug treated SJL/J mice immunized with proteolipid protein (PLP)139–151 peptide had attenuated disease severity, reduced accumulation of mononuclear cells in the central nervous system (CNS), and limited demyelination, without any apparent systemic toxicity. Splenic T cells from treated mice produced less cytokines upon antigenic rechallenge. In the spinal cords of 1V136-treated EAE mice, the expression of chemoattractants was also reduced, suggesting innate immune cell hyposensitization in the CNS. Indeed, systemic 1V136 did penetrate the CNS. These experiments indicated that repeated doses of a TLR7 ligand may desensitize dendritic cells in lymphoid organs, leading to diminished T cell responses. This treatment strategy might be a new modality to treat T cell mediated autoimmune diseases.


Cellular Immunology | 2008

In vivo efficacy of a phosphodiester TLR-9 aptamer and its beneficial effect in a pulmonary anthrax infection model.

Christina Wu; Mojgan Sabet; Tomoko Hayashi; Rommel I. Tawatao; Joshua Fierer; Dennis A. Carson; Donald G. Guiney; Maripat Corr

Immunostimulatory oligonucleotide (ISS-ODN) used as adjuvants are commonly modified with phosphorothioate (PS). The PS backbone prevents nuclease degradation, but confers undesired side effects, including systemic cytokine release. Previously, R10-60, a phosphodiester (PO) ISS-ODN, was structurally optimized as an intracellular Toll-like receptor-9 agonist. Here intravenous, intradermal and intranasal administration of PO R10-60 elicit local or adaptive immune responses with minimal systemic effects compared to a prototypic PS ISS-ODN in mice. Furthermore, prophylactic intranasal administration of PO R10-60 significantly delayed death in mice exposed to respiratory anthrax comparable to the PS ISS-ODN. The pattern of cytokine release suggested that early IL-1beta production might contribute to this protective effect, which was replicated with recombinant IL-1beta injections during infection. Hence, the transient effects from a PO TLR-9 agonist may be beneficial for protection in a bacterial bioterrorism attack, by delaying the onset of systemic infection without the induction of a cytokine syndrome.


Journal of Innate Immunity | 2014

Innate Immune Protection against Infectious Diseases by Pulmonary Administration of a Phospholipid-Conjugated TLR7 Ligand

Christina Wu; Brian Crain; Shiyin Yao; Mojgan Sabet; Fitzgerald Lao; Rommel I. Tawatao; Michael Chan; Donald F. Smee; Justin G. Julander; Howard B. Cottam; Donald G. Guiney; Maripat Corr; Dennis A. Carson; Tomoko Hayashi

Pulmonary administration of Toll-like receptor (TLR) ligands protects hosts from inhaled pathogens. However, systemic side effects induced by TLR stimulation limit clinical development. Here, a small-molecule TLR7 ligand conjugated with phospholipid, 1V270 (also designated TMX201), was tested for innate immune activation and its ability to prevent pulmonary infection in mice. We hypothesized that phospholipid conjugation would increase internalization by immune cells and localize the compound in the lungs, thus avoiding side effects due to systemic cytokine release. Pulmonary 1V270 administration increased innate cytokines and chemokines in bronchial alveolar lavage fluids, but neither caused systemic induction of cytokines nor B cell proliferation in distant lymphoid organs. 1V270 activated pulmonary CD11c+ dendritic cells, which migrated to local lymph nodes. However, there was minimal cell infiltration into the pulmonary parenchyma. Prophylactic administration of 1V270 significantly protected mice from lethal infection with Bacillus anthracis, Venezuelan equine encephalitis virus and H1N1 influenza virus. The maximum tolerated dose of 1V270 by pulmonary administration was 75 times the effective therapeutic dose. Therefore, pulmonary 1V270 treatment can protect the host from different infectious agents by stimulating local innate immune responses while exhibiting an excellent safety profile.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Activation of the Wnt signaling pathway in chronic lymphocytic leukemia

Desheng Lu; Yandong Zhao; Rommel I. Tawatao; Howard B. Cottam; Malini Sen; Lorenzo M. Leoni; Thomas J. Kipps; Maripat Corr; Dennis A. Carson

Collaboration


Dive into the Rommel I. Tawatao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Chan

University of California

View shared research outputs
Top Co-Authors

Avatar

Tomoko Hayashi

University of California

View shared research outputs
Top Co-Authors

Avatar

Christina Wu

University of California

View shared research outputs
Top Co-Authors

Avatar

Fitzgerald Lao

University of California

View shared research outputs
Top Co-Authors

Avatar

Shiyin Yao

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian Crain

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge