Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romulo Albuquerque is active.

Publication


Featured researches published by Romulo Albuquerque.


Nature | 2008

Sequence- and target-independent angiogenesis suppression by siRNA via TLR3

Mark E. Kleinman; Kiyoshi Yamada; A. Takeda; Vasu Chandrasekaran; Miho Nozaki; Judit Z. Baffi; Romulo Albuquerque; S. Yamasaki; M. Itaya; Yuzhen Pan; Binoy Appukuttan; Daniel Gibbs; Zhenglin Yang; Katalin Karikó; Balamurali K. Ambati; Traci A. Wilgus; Luisa A. DiPietro; Eiji Sakurai; Kang Zhang; Justine R. Smith; Ethan Will Taylor; Jayakrishna Ambati

Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-α/β activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-γ and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3–RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world’s population, and that siRNAs might induce unanticipated vascular or immune effects.


Nature | 2006

Corneal avascularity is due to soluble VEGF receptor-1.

Balamurali K. Ambati; Miho Nozaki; Nirbhai Singh; A. Takeda; P. Jani; Tushar Suthar; Romulo Albuquerque; Elizabeth Richter; Eiji Sakurai; Michael T. Newcomb; Mark E. Kleinman; Ruth B. Caldwell; Qing Lin; Yuichiro Ogura; Angela Orecchia; Don Samuelson; Dalen W. Agnew; Judy St. Leger; W. Richard Green; Parameshwar J. Mahasreshti; David T. Curiel; Donna Kwan; Helene Marsh; Sakae Ikeda; Lucy J. Leiper; J. Martin Collinson; Sasha Bogdanovich; Tejvir S. Khurana; Megan E. Baldwin; Napoleone Ferrara

Corneal avascularity—the absence of blood vessels in the cornea—is required for optical clarity and optimal vision, and has led to the cornea being widely used for validating pro- and anti-angiogenic therapeutic strategies for many disorders. But the molecular underpinnings of the avascular phenotype have until now remained obscure and are all the more remarkable given the presence in the cornea of vascular endothelial growth factor (VEGF)-A, a potent stimulator of angiogenesis, and the proximity of the cornea to vascularized tissues. Here we show that the cornea expresses soluble VEGF receptor-1 (sVEGFR-1; also known as sflt-1) and that suppression of this endogenous VEGF-A trap by neutralizing antibodies, RNA interference or Cre-lox-mediated gene disruption abolishes corneal avascularity in mice. The spontaneously vascularized corneas of corn1 and Pax6+/- mice and Pax6+/- patients with aniridia are deficient in sflt-1, and recombinant sflt-1 administration restores corneal avascularity in corn1 and Pax6+/- mice. Manatees, the only known creatures uniformly to have vascularized corneas, do not express sflt-1, whereas the avascular corneas of dugongs, also members of the order Sirenia, elephants, the closest extant terrestrial phylogenetic relatives of manatees, and other marine mammals (dolphins and whales) contain sflt-1, indicating that it has a crucial, evolutionarily conserved role. The recognition that sflt-1 is essential for preserving the avascular ambit of the cornea can rationally guide its use as a platform for angiogenic modulators, supports its use in treating neovascular diseases, and might provide insight into the immunological privilege of the cornea.


Nature | 2011

DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration

Hiroki Kaneko; Sami Dridi; Valeria Tarallo; Bradley D. Gelfand; Benjamin J. Fowler; Won Gil Cho; Mark E. Kleinman; Steven L. Ponicsan; William W. Hauswirth; Vince A. Chiodo; Katalin Karikó; Jae-Wook Yoo; Dong-ki Lee; Majda Hadziahmetovic; Ying Qing Song; Smita Misra; Gautam Chaudhuri; Frank W. Buaas; Robert E. Braun; David R. Hinton; Qing-qing Zhang; Hans E. Grossniklaus; Jan M. Provis; Michele C. Madigan; Ann H. Milam; Nikki L. Justice; Romulo Albuquerque; Alexander D. Blandford; Sasha Bogdanovich; Yoshio Hirano

Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.


Cell | 2012

DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88

Valeria Tarallo; Yoshio Hirano; Bradley D. Gelfand; Sami Dridi; Nagaraj Kerur; Younghee Kim; Won Gil Cho; Hiroki Kaneko; Benjamin J. Fowler; Sasha Bogdanovich; Romulo Albuquerque; William W. Hauswirth; Vince A. Chiodo; Jennifer F. Kugel; James A. Goodrich; Steven L. Ponicsan; Gautam Chaudhuri; Michael P. Murphy; Joshua L. Dunaief; Balamurali K. Ambati; Yuichiro Ogura; Jae Wook Yoo; Dong Ki Lee; Patrick Provost; David R. Hinton; Gabriel Núñez; Judit Z. Baffi; Mark E. Kleinman; Jayakrishna Ambati

Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.


Nature Medicine | 2009

Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth

Romulo Albuquerque; Takahiko Hayashi; Won Gil Cho; Mark E. Kleinman; Sami Dridi; A. Takeda; Judit Z. Baffi; Kiyoshi Yamada; Hiroki Kaneko; Martha G. Green; Joseph Chappell; Jörg Wilting; Herbert A. Weich; Satoru Yamagami; Shiro Amano; Nobuhisa Mizuki; Jonathan S. Alexander; Martha L. Peterson; Rolf A. Brekken; Masanori Hirashima; Seema Capoor; Tomohiko Usui; Balamurali K. Ambati; Jayakrishna Ambati

Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessel growth can lead to myriad diseases. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessel growth has not to our knowledge been previously described. We report the existence of a splice variant of the gene encoding vascular endothelial growth factor receptor-2 (Vegfr-2) that encodes a secreted form of the protein, designated soluble Vegfr-2 (sVegfr-2), that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c function. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without affecting blood vasculature. Administration of sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 thus acts as a molecular uncoupler of blood and lymphatic vessels; modulation of sVegfr-2 might have therapeutic effects in treating lymphatic vascular malformations, transplantation rejection and, potentially, tumor lymphangiogenesis and lymphedema (pages 993–994)


Nature | 2009

CCR3 is a target for age-related macular degeneration diagnosis and therapy.

A. Takeda; Judit Z. Baffi; Mark E. Kleinman; Won Gil Cho; Miho Nozaki; Kiyoshi Yamada; Hiroki Kaneko; Romulo Albuquerque; Sami Dridi; Kuniharu Saito; Brian J. Raisler; Steven J. Budd; P. Geisen; Ariel Munitz; Balamurali K. Ambati; Martha G. Green; Tatsuro Ishibashi; John D. Wright; Alison A. Humbles; Craig Gerard; Yuichiro Ogura; Yuzhen Pan; Justine R. Smith; Salvatore Grisanti; M. Elizabeth Hartnett; Marc E. Rothenberg; Jayakrishna Ambati

Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularisation (CNV). Here we show that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in choroidal neovascular endothelial cells in humans with AMD, and that despite the expression of its ligands eotaxin-1, -2 and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation because it occurred in mice lacking eosinophils or mast cells, and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor A (VEGF-A) neutralization, which is in clinical use at present, and, unlike VEGF-A blockade, is not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.


Pain | 2006

Cerebral activation during thermal stimulation of patients who have burning mouth disorder: an fMRI study.

Romulo Albuquerque; Reny de Leeuw; Charles R. Carlson; Jeffrey P. Okeson; Craig S. Miller; Anders H. Andersen

Abstract The pathophysiology of burning mouth disorder (BMD) is not clearly understood, but central neuropathic mechanisms are thought to be involved. The aim of this study was to gain insight into the pathophysiology associated with BMD by using functional magnetic resonance imaging (fMRI). Areas of brain activation following thermal stimulation of the trigeminal nerve of eight female patients with BMD (mean age 49.1 ± 10.1) were mapped using fMRI and compared with those of eight matched pain‐free volunteers (mean age 50.3 ± 12.3). Qualitative and quantitative differences in brain activation patterns between the two study groups were demonstrated. BMD patients displayed greater fractional signal changes in the right anterior cingulate cortex (BA 32/24) and bilateral precuneus than did controls (p < 0.005). The control group showed larger fractional signal changes in the bilateral thalamus, right middle frontal gyrus, right pre‐central gyrus, left lingual gyrus, and cerebellum than did the BMD patients (p < 0.005). In addition, BMD patients had less volumetric activation throughout the entire brain compared to the control group. Overall, BMD patients displayed brain activation patterns similar to those of patients with other neuropathic pain conditions and appear to process thermal painful stimulation to the trigeminal nerve qualitatively and quantitatively different than pain‐free individuals. These findings suggest that brain hypoactivity may be an important feature in the pathophysiology of BMD.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth.

Won Gil Cho; Romulo Albuquerque; Mark E. Kleinman; Valeria Tarallo; Adelaide Greco; Miho Nozaki; Martha G. Green; Judit Z. Baffi; Balamurali K. Ambati; Massimo De Falco; Jonathan S. Alexander; Arturo Brunetti; Sandro De Falco; Jayakrishna Ambati

Neovascularization in response to tissue injury consists of the dual invasion of blood (hemangiogenesis) and lymphatic (lymphangiogenesis) vessels. We reported recently that 21-nt or longer small interfering RNAs (siRNAs) can suppress hemangiogenesis in mouse models of choroidal neovascularization and dermal wound healing independently of RNA interference by directly activating Toll-like receptor 3 (TLR3), a double-stranded RNA immune receptor, on the cell surface of blood endothelial cells. Here, we show that a 21-nt nontargeted siRNA suppresses both hemangiogenesis and lymphangiogenesis in mouse models of neovascularization induced by corneal sutures or hindlimb ischemia as efficiently as a 21-nt siRNA targeting vascular endothelial growth factor-A. In contrast, a 7-nt nontargeted siRNA, which is too short to activate TLR3, does not block hemangiogenesis or lymphangiogenesis in these models. Exposure to 21-nt siRNA, which we demonstrate is not internalized unless cell-permeating moieties are used, triggers phosphorylation of cell surface TLR3 on lymphatic endothelial cells and induces apoptosis. These findings introduce TLR3 activation as a method of jointly suppressing blood and lymphatic neovascularization and simultaneously raise new concerns about the undesirable effects of siRNAs on both circulatory systems.


eLife | 2013

Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1

Ling Luo; Hironori Uehara; Xiaohui Zhang; Subrata K. Das; Thomas Olsen; Derick G. Holt; Jacquelyn Simonis; Kyle Jackman; Nirbhai Singh; Tadashi R. Miya; Wei Huang; Faisal Ahmed; Ana Bastos-Carvalho; Yun-Zheng Le; Christina Mamalis; Vince A. Chiodo; William W. Hauswirth; Judit Z. Baffi; Pedro Miguel Lacal; Angela Orecchia; Napoleone Ferrara; Guangping Gao; Kim Young-hee; Yingbin Fu; Leah A. Owen; Romulo Albuquerque; Wolfgang Baehr; Kirk R. Thomas; Dean Y. Li; Kakarla V. Chalam

Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI: http://dx.doi.org/10.7554/eLife.00324.001


Clinical Cancer Research | 2010

Neuroblastoma progression correlates with downregulation of the lymphangiogenesis inhibitor sVEGFR-2.

Jürgen C. Becker; Helena Pavlakovic; Fabian Ludewig; Fabiola Wilting; Herbert A. Weich; Romulo Albuquerque; Jayakrishna Ambati; Jörg Wilting

Purpose: Tumor progression correlates with the induction of a dense supply of blood vessels and the formation of peritumoral lymphatics. Hemangiogenesis and lymphangiogenesis are potently regulated by members of the vascular endothelial growth factor (VEGF) family. Previous studies have indicated the upregulation of VEGF-A and -C in progressed neuroblastoma, however, quantification was performed using semiquantitative methods, or patients who had received radiotherapy or chemotherapy were studied. Experimental Design: We have analyzed primary neuroblastoma from 49 patients using real-time reverse transcription-PCR and quantified VEGF-A, -C, and -D and VEGF receptors (VEGFR)-1, 2, 3, as well as the soluble form of VEGFR2 (sVEGFR-2), which has recently been characterized as an endogenous inhibitor of lymphangiogenesis. None of the patients had received radiotherapy or chemotherapy before tumor resection. Results: We did not observe upregulation of VEGF-A, -C, and -D in metastatic neuroblastoma, but found significant downregulation of the lymphangiogenesis inhibitor sVEGFR-2 in metastatic stages III, IV, and IVs. In stage IV neuroblastoma, there were tendencies for the upregulation of VEGF-A and -D and the downregulation of the hemangiogenesis/lymphangiogenesis inhibitors VEGFR-1 and sVEGFR-2 in MYCN-amplified tumors. Similarly, MYCN transfection of the neuroblastoma cell line SH-EP induced the upregulation of VEGF-A and -D and the switching-off of sVEGFR-2. Conclusion: We provide evidence for the downregulation of the lymphangiogenesis inhibitor sVEGFR-2 in metastatic neuroblastoma stages, which may promote lymphogenic metastases. Downregulation of hemangiogenesis and lymphangiogenesis inhibitors VEGFR-1 and sVEGFR-2, and upregulation of angiogenic activators VEGF-A and VEGF-D in MYCN-amplified stage IV neuroblastoma supports the crucial effect of this oncogene on neuroblastoma progression. Clin Cancer Res; 16(5); 1431–41

Collaboration


Dive into the Romulo Albuquerque's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Takeda

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Miho Nozaki

Nagoya City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sami Dridi

University of Arkansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Cho

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge