Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romy Chakraborty is active.

Publication


Featured researches published by Romy Chakraborty.


Nature | 2001

Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas

John D. Coates; Romy Chakraborty; Joseph G. Lack; Susan M. O'Connor; Kimberly A. Cole; Kelly S. Bender; Laurie A. Achenbach

Benzene contamination is a significant problem. It is used in a wide range of manufacturing processes and is a primary component of petroleum-based fuels. Benzene is a hydrocarbon that is soluble, mobile, toxic and stable, especially in ground and surface waters. It is poorly biodegraded in the absence of oxygen. However, anaerobic benzene biodegradation has been documented under various conditions. Although benzene biomineralization has been demonstrated with nitrate, Fe(III), sulphate or CO2 as alternative electron acceptors, these studies were based on sediments or microbial enrichments. Until now there were no organisms in pure culture that degraded benzene anaerobically. Here we report two Dechloromonas strains, RCB and JJ, that can completely mineralize various mono-aromatic compounds including benzene to CO2 in the absence of O2 with nitrate as the electron acceptor. This is the first example, to our knowledge, of an organism of any type that can oxidize benzene anaerobically, and we demonstrate the potential applicability of these organisms to the treatment of contaminated environments.


Environmental Microbiology | 2012

Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill

Jacob Bælum; Sharon E. Borglin; Romy Chakraborty; Julian L. Fortney; Regina Lamendella; Olivia U. Mason; Manfred Auer; Marcin Zemla; Markus Bill; Mark E. Conrad; Stephanie Malfatti; Susannah G. Tringe; Hoi-Ying N. Holman; Terry C. Hazen; Janet K. Jansson

The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability.


Applied Microbiology and Biotechnology | 2004

Anaerobic degradation of monoaromatic hydrocarbons

Romy Chakraborty; John D. Coates

Over the last two decades significant advances have been made in our understanding of the anaerobic biodegradability of monoaromatic hydrocarbons. It is now known that compounds such as benzene, toluene, ethylbenzene, and all three xylene isomers can be biodegraded in the absence of oxygen by a broad diversity of organisms. These compounds have been shown to serve as carbon and energy sources for bacteria growing phototrophically, or respiratorily with nitrate, manganese, ferric iron, sulfate, or carbon dioxide as the sole electron acceptor. In addition, it has also been recently shown that complete degradation of monoaromatic hydrocarbons can also be coupled to the respiration of oxyanions of chlorine such as perchlorate or chlorate, or to the reduction of the quinone moieties of humic substances. Many pure cultures of hydrocarbon-degrading anaerobes now exist and some novel biochemical and genetic pathways have been identified. In general, a fumarate addition reaction is used as the initial activation step of the catabolic process of the corresponding monoaromatic hydrocarbon compounds. However, other reactions may alternatively be involved depending on the electron acceptor utilized or the compound being degraded. In the case of toluene, fumarate addition to the methyl group mediated by benzylsuccinate synthase appears to be the universal mechanism of activation and is now known to be utilized by anoxygenic phototrophs, nitrate-reducing, Fe(III)-reducing, sulfate-reducing, and methanogenic cultures. Many of these biochemical pathways produce unique extracellular intermediates that can be utilized as biomarkers for the monitoring of hydrocarbon degradation in anaerobic natural environments.


Applied and Environmental Microbiology | 2002

Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration

John D. Coates; Kimberly A. Cole; Romy Chakraborty; Susan M. O'Connor; Laurie A. Achenbach

ABSTRACT Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 × 101 in aquifer sediments to a high of 9.33 × 106 in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N2. Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included simple volatile fatty acids such as propionate, butyrate, and valerate as well as simple organic acids such as lactate and pyruvate. Analysis of the complete sequences of the 16S rRNA genes revealed that the isolates were not closely related to each other and were phylogenetically diverse, with members in the alpha, beta, gamma, and delta subdivisions of the Proteobacteria. Most of the isolates were closely related to known genera not previously recognized for their ability to couple growth to HS oxidation, while one of the isolates represented a new genus in the delta subclass of the Proteobacteria. The results presented here demonstrate that microbial oxidation of HS is a ubiquitous metabolism in the environment. This study represents the first description of HS-oxidizing isolates and demonstrates that microorganisms capable of HS oxidation are phylogenetically diverse.


Applied and Environmental Microbiology | 2005

Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and Xylene Compounds by Dechloromonas Strain RCB

Romy Chakraborty; Susan M. O'Connor; Emily Chan; John D. Coates

ABSTRACT Dechloromonas strain RCB has been shown to be capable of anaerobic degradation of benzene coupled to nitrate reduction. As a continuation of these studies, the metabolic versatility and hydrocarbon biodegradative capability of this organism were investigated. The results of these revealed that in addition to nitrate, strain RCB could alternatively degrade benzene both aerobically and anaerobically with perchlorate or chlorate [(per)chlorate] as a suitable electron acceptor. Furthermore, with nitrate as the electron acceptor, strain RCB could also utilize toluene, ethylbenzene, and all three isomers of xylene (ortho-, meta-, and para-) as electron donors. While toluene and ethylbenzene were completely mineralized to CO2, strain RCB did not completely mineralize para-xylene but rather transformed it to some as-yet-unidentified metabolite. Interestingly, with nitrate as the electron acceptor, strain RCB degraded benzene and toluene concurrently when the hydrocarbons were added as a mixture and almost 92 μM total hydrocarbons were oxidized within 15 days. The results of these studies emphasize the unique metabolic versatility of this organism, highlighting its potential applicability to bioremediative technologies.


Environmental Science & Technology | 2013

Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the Deepwater Horizon Oil Spill in the Gulf of Mexico

Eric A. Dubinsky; Mark E. Conrad; Romy Chakraborty; Markus Bill; Sharon E. Borglin; James T. Hollibaugh; Olivia U. Mason; Yvette M. Piceno; Francine C. Reid; William T. Stringfellow; Lauren M. Tom; Terry C. Hazen; Gary L. Andersen

The Deepwater Horizon oil spill produced large subsurface plumes of dispersed oil and gas in the Gulf of Mexico that stimulated growth of psychrophilic, hydrocarbon degrading bacteria. We tracked succession of plume bacteria before, during and after the 83-day spill to determine the microbial response and biodegradation potential throughout the incident. Dominant bacteria shifted substantially over time and were dependent on relative quantities of different hydrocarbon fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest proportions of n-alkanes and cycloalkanes at depth and corresponded with dominance by Oceanospirillaceae and Pseudomonas. Once partial capture of oil and gas began 43 days into the spill, petroleum hydrocarbons decreased, the fraction of aromatic hydrocarbons increased, and Colwellia, Cycloclasticus, and Pseudoalteromonas increased in dominance. Enrichment of Methylomonas coincided with positive shifts in the δ(13)C values of methane in the plume and indicated significant methane oxidation occurred earlier than previously reported. Anomalous oxygen depressions persisted at plume depths for over six weeks after well shut-in and were likely caused by common marine heterotrophs associated with degradation of high-molecular-weight organic matter, including Methylophaga. Multiple hydrocarbon-degrading bacteria operated simultaneously throughout the spill, but their relative importance was controlled by changes in hydrocarbon supply.


Research in Microbiology | 2002

Anaerobic benzene biodegradation--a new era.

John D. Coates; Romy Chakraborty; Michael J. McInerney

Benzene is biodegraded in the absence of oxygen under a variety of terminal electron-accepting conditions. However, the mechanism by which anaerobic benzene degradation occurs is unclear. Phenol and benzoate have been consistently detected as intermediates of anaerobic benzene degradation, suggesting that the hydroxylation of benzene to phenol is one of the initial steps in anaerobic benzene degradation. The conversion of phenol to benzoate could then occur by the carboxylation of phenol to form 4-hydroxybenzoate followed by the reductive removal of the hydroxyl group to form benzoate. 13C-Labeling studies suggest that the carboxyl carbon of benzoate is derived from one of the carbons of benzene. Although the fumarate addition reaction is commonly used to activate many hydrocarbons for anaerobic degradation, the large activation energy required to remove hydrogen from the benzene ring argues against such an approach for anaerobic benzene metabolism. The alkylation of benzene to toluene has been detected in several mammalian tissues, and offers an interesting alternate hypothesis for anaerobic benzene degradation in microbial systems. In support of this, anaerobic benzene degradation by Dechloromonas strain RCB, the only known species to degrade benzene in the absence of oxygen, is stimulated by the addition of vitamin B12 and inhibited by the addition of propyl iodide which is consistent with the involvement of a corrinoid enzymatic step. Alkylation of benzene to toluene is also consistent with labeling data that suggests that the carboxyl carbon of benzoate is derived from one of the benzene carbons. However, it is difficult to envision how phenol would be formed if benzene is alkylated to toluene. As such, it is possible that diverse mechanisms for anaerobic benzene degradation may be operative in different anaerobic microorganisms.


Journal of Bacteriology | 2005

Identification, Characterization, and Classification of Genes Encoding Perchlorate Reductase

Kelly S. Bender; Ching Shang; Romy Chakraborty; Sara M. Belchik; John D. Coates; Laurie A. Achenbach

The reduction of perchlorate to chlorite, the first enzymatic step in the bacterial reduction of perchlorate, is catalyzed by perchlorate reductase. The genes encoding perchlorate reductase (pcrABCD) in two Dechloromonas species were characterized. Sequence analysis of the pcrAB gene products revealed similarity to alpha- and beta-subunits of microbial nitrate reductase, selenate reductase, dimethyl sulfide dehydrogenase, ethylbenzene dehydrogenase, and chlorate reductase, all of which are type II members of the microbial dimethyl sulfoxide (DMSO) reductase family. The pcrC gene product was similar to a c-type cytochrome, while the pcrD gene product exhibited similarity to molybdenum chaperone proteins of the DMSO reductase family members mentioned above. Expression analysis of the pcrA gene from Dechloromonas agitata indicated that transcription occurred only under anaerobic (per)chlorate-reducing conditions. The presence of oxygen completely inhibited pcrA expression regardless of the presence of perchlorate, chlorate, or nitrate. Deletion of the pcrA gene in Dechloromonas aromatica abolished growth in both perchlorate and chlorate but not growth in nitrate, indicating that the pcrABCD genes play a functional role in perchlorate reduction separate from nitrate reduction. Phylogenetic analysis of PcrA and other alpha-subunits of the DMSO reductase family indicated that perchlorate reductase forms a monophyletic group separate from chlorate reductase of Ideonella dechloratans. The separation of perchlorate reductase as an activity distinct from chlorate reductase was further supported by DNA hybridization analysis of (per)chlorate- and chlorate-reducing strains using the pcrA gene as a probe.


Applied and Environmental Microbiology | 2005

Hydroxylation and Carboxylation—Two Crucial Steps of Anaerobic Benzene Degradation by Dechloromonas Strain RCB

Romy Chakraborty; John D. Coates

ABSTRACT Benzene is a highly toxic industrial compound that is essential to the production of various chemicals, drugs, and fuel oils. Due to its toxicity and carcinogenicity, much recent attention has been focused on benzene biodegradation, especially in the absence of molecular oxygen. However, the mechanism by which anaerobic benzene biodegradation occurs is still unclear. This is because until the recent isolation of Dechloromonas strains JJ and RCB no organism that anaerobically degraded benzene was available with which to elucidate the pathway. Although many microorganisms use an initial fumarate addition reaction for hydrocarbon biodegradation, the large activation energy required argues against this mechanism for benzene. Other possible mechanisms include hydroxylation, carboxylation, biomethylation, or reduction of the benzene ring, but previous studies performed with undefined benzene-degrading cultures were unable to clearly distinguish which, if any, of these alternatives is used. Here we demonstrate that anaerobic nitrate-dependent benzene degradation by Dechloromonas strain RCB involves an initial hydroxylation, subsequent carboxylation, and loss of the hydroxyl group to form benzoate. These studies provide the first pure-culture evidence of the pathway of anaerobic benzene degradation. The outcome of these studies also suggests that all anaerobic benzene-degrading microorganisms, regardless of their terminal electron acceptor, may use this pathway.


Journal of Bacteriology | 2007

Cell-Wide Responses to Low-Oxygen Exposure in Desulfovibrio vulgaris Hildenborough

Aindrila Mukhopadhyay; Alyssa M. Redding; Marcin P. Joachimiak; Adam P. Arkin; Sharon E. Borglin; Paramvir Dehal; Romy Chakraborty; Jil T. Geller; Terry C. Hazen; Qiang He; Dominique Joyner; Vincent J.J. Martin; Judy D. Wall; Zamin Koo Yang; Jizhong Zhou; Jay D. Keasling

The responses of the anaerobic, sulfate-reducing organism Desulfovibrio vulgaris Hildenborough to low-oxygen exposure (0.1% O(2)) were monitored via transcriptomics and proteomics. Exposure to 0.1% O(2) caused a decrease in the growth rate without affecting viability. Concerted upregulation of the predicted peroxide stress response regulon (PerR) genes was observed in response to the 0.1% O(2) exposure. Several of the candidates also showed increases in protein abundance. Among the remaining small number of transcript changes was the upregulation of the predicted transmembrane tetraheme cytochrome c(3) complex. Other known oxidative stress response candidates remained unchanged during the low-O(2) exposure. To fully understand the results of the 0.1% O(2) exposure, transcriptomics and proteomics data were collected for exposure to air using a similar experimental protocol. In contrast to the 0.1% O(2) exposure, air exposure was detrimental to both the growth rate and viability and caused dramatic changes at both the transcriptome and proteome levels. Interestingly, the transcripts of the predicted PerR regulon genes were downregulated during air exposure. Our results highlight the differences in the cell-wide responses to low and high O(2) levels in D. vulgaris and suggest that while exposure to air is highly detrimental to D. vulgaris, this bacterium can successfully cope with periodic exposure to low O(2) levels in its environment.

Collaboration


Dive into the Romy Chakraborty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam P. Arkin

Sanford-Burnham Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Eoin L. Brodie

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John D. Coates

University of California

View shared research outputs
Top Co-Authors

Avatar

Sharon E. Borglin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam M. Deutschbauer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dominique Joyner

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gary L. Andersen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Boris Faybishenko

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jil T. Geller

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge