Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ron F. Morrison is active.

Publication


Featured researches published by Ron F. Morrison.


Journal of Lipid Research | 2003

Isomer-specific regulation of metabolism and PPARγ signaling by CLA in human preadipocytes

J. Mark Brown; Maria Sandberg Boysen; Søren Skov Jensen; Ron F. Morrison; Jayne M. Storkson; Renee Lea-Currie; Michael W. Pariza; Susanne Mandrup; Michael McIntosh

Trans-10,cis-12 conjugated linoleic acid (CLA) has previously been shown to be the CLA isomer responsible for CLA-induced reductions in body fat in animal models, and we have shown that this isomer, but not the cis-9,trans-11 CLA isomer, specifically decreased triglyceride (TG) accumulation in primary human adiopcytes in vitro. Here we investigated the mechanism behind the isomer-specific, CLA-mediated reduction in TG accumulation in differentiating human preadipocytes. Trans-10,cis-12 CLA decreased insulin-stimulated glucose uptake and oxidation, and reduced insulin-dependent glucose transporter 4 gene expression. Furthermore, trans-10,cis-12 CLA reduced oleic acid uptake and oxidation when compared with all other treatments. In parallel to CLAs effects on metabolism, trans-10,cis-12 CLA decreased, whereas cis-9,trans-11 CLA increased, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and several of its downstream target genes when compared with vehicle controls. Transient transfections demonstrated that both CLA isomers antagonized ligand-dependent activation of PPARγ. Collectively, trans-10,cis-12, but not cis-9, trans-11, CLA decreased glucose and lipid uptake and oxidation and preadipocyte differentiation by altering preadipocyte gene transcription in a manner that appeared to be due, in part, to decreased PPARγ expression.


Journal of Biological Chemistry | 2004

Conjugated Linoleic Acid Induces Human Adipocyte Delipidation AUTOCRINE/PARACRINE REGULATION OF MEK/ERK SIGNALING BY ADIPOCYTOKINES

J. Mark Brown; Maria Sandberg Boysen; Soonkyu Chung; Olowatoyin Fabiyi; Ron F. Morrison; Susanne Mandrup; Michael McIntosh

Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-γ and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8.


PLOS ONE | 2010

Impact of reference gene selection for target gene normalization on experimental outcome using real-time qRT-PCR in adipocytes

Bradley S. Ferguson; Heesun Nam; Robin G. Hopkins; Ron F. Morrison

Background With the current rise in obesity-related morbidities, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) has become a widely used method for assessment of genes expressed and regulated by adipocytes. In order to measure accurate changes in relative gene expression and monitor intersample variability, normalization to endogenous control genes that do not change in relative expression is commonly used with qRT-PCR determinations. However, historical evidence has clearly demonstrated that the expression profiles of traditional control genes (e.g., β-actin, GAPDH, α-tubulin) are differentially regulated across multiple tissue types and experimental conditions. Methodology/Principal Findings Therefore, we validated six commonly used endogenous control genes under diverse experimental conditions of inflammatory stress, oxidative stress, synchronous cell cycle progression and cellular differentiation in 3T3-L1 adipocytes using TaqMan qRT-PCR. Under each study condition, we further evaluated the impact of reference gene selection on experimental outcome using examples of target genes relevant to adipocyte function and differentiation. We demonstrate that multiple reference genes are regulated in a condition-specific manner that is not suitable for use in target gene normalization. Conclusion/Significance Data are presented demonstrating that inappropriate reference gene selection can have profound influence on study conclusions ranging from divergent statistical outcome to inaccurate data interpretation of significant magnitude. This study validated the use of endogenous controls in 3T3-L1 adipocytes and highlights the impact of inappropriate reference gene selection on data interpretation and study conclusions.


Journal of Cellular Physiology | 2007

Skp2-mediated p27(Kip1) degradation during S/G2 phase progression of adipocyte hyperplasia

Corinth A. Auld; Karishma M. Fernandes; Ron F. Morrison

p27(Kip1), an important regulator of Cdk2 activity and G1/S transition, is tightly regulated in a cell‐type and condition‐specific manner to integrate mitogenic and differentiation signals governing cell cycle progression. We show that p27 protein levels progressively declined from mid‐G1 through late‐G2 phase as density‐arrested 3T3‐L1 preadipocytes synchronously reentered the cell cycle during early stages of adipocyte differentiation. This dramatic fall in p27 protein accumulation was due, at least in part, to a decrease in protein stability. Specific inhibitors of the 26S proteasome were shown to completely block the decrease in p27 protein levels throughout G1, increase the abundance of ubiquitylated p27 protein, and inhibit G1/S transition resulting in G1 arrest. It is further demonstrated that p27 was phosphorylated on threonine 187 during S phase progression by Cdk2 and that phosphorylated p27 was polyubiquitylated and degraded. Furthermore, we demonstrate that Skp2 and Cks1 dramatically increased during S/G2 phase progression concomitantly with the maximal fall in p27 protein. Complete knockdown of Skp2 with RNA interference partially prevented p27 degradation equivalent to that observed with Cdk2 blockade suggesting that the SCFSkp2 E3 ligase and other proteasome‐dependent mechanisms contribute to p27 degradation during preadipocyte replication. Interestingly, Skp2‐mediated p27 degradation was not essential for G1/S or S/G2 transition as preadipocytes shifted from quiescence to proliferation during adipocyte hyperplasia. Finally, evidence is presented suggesting that elevated p27 protein in the absence of Skp2 was neutralized by sequestration of p27 protein into Cyclin D1/Cdk4 complexes. J. Cell. Physiol. 211: 101–111, 2007.


The Journal of Clinical Endocrinology and Metabolism | 2014

Oncostatin M Is Produced in Adipose Tissue and Is Regulated in Conditions of Obesity and Type 2 Diabetes

David Sánchez-Infantes; Ursula A. White; Carrie M. Elks; Ron F. Morrison; Jeffrey M. Gimble; Robert V. Considine; Anthony W. Ferrante; Eric Ravussin; Jacqueline M. Stephens

CONTEXT Adipose tissue is a highly active endocrine organ that secretes many factors that affect other tissues and whole-body metabolism. Adipocytes are responsive to several glycoprotein 130 (gp130) cytokines, some of which have been targeted as potential antiobesity therapeutics. OBJECTIVE Oncostatin M (OSM) is a gp130 family member known to inhibit adipocyte differentiation in vitro, but its effects on other adipocyte properties are not characterized. The expression of OSM in white adipose tissue (WAT) has not been evaluated in the context of obesity. Thus, our objective was to examine the expression of adipose tissue OSM in obese animals and humans. DESIGN OSM expression was examined in adipose tissues from mice with diet-induced and genetic obesity and in obese humans as well as in fractionated adipose tissue from mice. Murine adipocytes were used to examine OSM receptor expression and the effects of OSM on adipocytes, including the secretion of factors such as plasminogen activator inhibitor 1 and IL-6, which are implicated in metabolic diseases. RESULTS OSM expression is increased in rodent and human obesity/type 2 diabetes mellitus. In humans, OSM levels correlate with body weight and insulin and are inversely correlated with glucose disposal rate as measured by hyperinsulinemic-euglycemic clamp. OSM is not produced from the adipocytes in WAT but derives from cells in the stromovascular fraction, including F4/80(+) macrophages. The specific receptor of OSM, OSM receptor-β, is expressed in adipocytes and adipose tissue and increased in both rodent models of obesity examined. OSM acts on adipocytes to induce the expression and secretion of plasminogen activator inhibitor 1 and IL-6. CONCLUSIONS These data indicate that WAT macrophages are a source of OSM and that OSM levels are significantly induced in murine and human obesity/type 2 diabetes mellitus. These studies suggest that OSM produced from immune cells in WAT acts in a paracrine manner on adipocytes to promote a proinflammatory phenotype in adipose tissue.


Journal of Cellular Biochemistry | 2007

Hormonal induction of adipogenesis induces Skp2 expression through PI3K and MAPK pathways

Corinth A. Auld; Carla D. Caccia; Ron F. Morrison

We have previously shown that the F‐box protein, S‐phase kinase‐associated protein (Skp2) plays a mechanistic role in targeting the cell‐cycle inhibitor, p27 for degradation by the 26S proteasome during early stages of 3T3‐L1 adipocyte differentiation. Here, we demonstrate that protein levels of Skp2 and its accessory protein, Cks1 increased as density‐arrested preadipocytes re‐entered the cell cycle during clonal expansion, decreased with differentiation‐induced growth arrest, and became refractory to hormonal stimulation following the onset of terminal adipocyte differentiation. Component analysis revealed that while maximal Skp2/Cks1 protein accumulation required the complete differentiation cocktail, that insulin was principally involved. Skp2 mRNA accumulation was found to precede the increase in Skp2 protein and succeed the activation of Akt and Erk1/2, mediators of phosphatidylinositol‐3 kinase (PI3K) and mitogen‐activated protein kinase (MAPK) signal transduction pathways, respectively. Using specific inhibitors, we found that while activation of both pathways was required for maximal expression, PI3K signaling was primarily responsible for the increase in Skp2/Cks1 accumulation. The increase in Skp2 mRNA was notable 4 h following hormonal stimulation, plateaued by 12 h during mid‐G1 phase progression, and occurred without change to mRNA stability. We further demonstrate that luciferase activity, originating from a pGL3 vector containing 2.4 kb of the Skp2 promoter, increased 2.5‐fold with hormonal stimulation. This increase in promoter activity was markedly suppressed following PI3K and MAPK blockade. Deletion studies indicate that responsive elements were located within the proximal Skp2 promoter. These data demonstrate that Skp2 is transcriptionally regulated by PI3K and MAPK pathways as 3T3‐L1 preadipocytes transition from quiescence to proliferation during adipocyte hyperplasia. J. Cell. Biochem. 100: 204–216, 2007.


Medicine and Science in Sports and Exercise | 2008

Phosphorylation of the JAK2–STAT5 Pathway in Response to Acute Aerobic Exercise

Leslie A. Consitt; Laurie Wideman; Matthew S. Hickey; Ron F. Morrison

UNLABELLED Growth hormone (GH) is a powerful stimulator of the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway. Acute exercise is a known stimulus for GH secretion. PURPOSE The purpose of this study was to determine the phosphorylation of the JAK2-STAT5 pathway in human skeletal muscle in response to acute aerobic exercise. METHODS Eleven young (22.5 +/- 0.6, mean +/- SE), healthy, aerobically trained males performed 30 min of cycling at 70% V O2max. Blood samples were collected at 10- to 15-min intervals and analyzed for human GH, immunofunctional (IF) GH, GH binding protein, and insulin-like growth factor I (IGF-I). Muscle biopsies were taken from the vastus lateralis before exercise, immediately after exercise, as well as, 30 and 60 min postexercise. Muscle samples were analyzed for changes in JAK2 and STAT5 tyrosine phosphorylation, as well as changes in JAK2 and STAT5 protein content. RESULTS Multivariate ANOVA with post hoc comparisons demonstrated that GH and IF GH were significantly elevated immediately after exercise compared with preexercise (P < 0.001). Exercise significantly increased the phosphorylation of JAK2 immediately after exercise (P = 0.004). A trend toward increasing levels of STAT5 phosphorylation was observed immediately after exercise (P = 0.08) and was significantly elevated 30 min after exercise (P = 0.002), compared with preexercise levels. Muscle JAK2 and STAT5 protein content did not change. CONCLUSION The results demonstrate that the JAK2-STAT5 pathway is activated in response to acute aerobic exercise in human skeletal muscle and suggests that the exercise-induced release of GH may play a role in the activation of this pathway.


Obesity | 2006

Evidence for cytosolic p27(Kip1) ubiquitylation and degradation during adipocyte hyperplasia.

Corinth A. Auld; Ron F. Morrison

Objective: Subcellular localization has been shown to play an important role in determining activity and accumulation of p27 protein during cell cycle progression. The purpose of this study was to examine p27 localization and ubiquitylation in relation to E3 ligase expression during adipocyte hyperplasia.


Biochemistry and biophysics reports | 2016

Curcumin inhibits 3T3-L1 preadipocyte proliferation by mechanisms involving post-transcriptional p27 regulation

Bradley S. Ferguson; Heesun Nam; Ron F. Morrison

Previous reports from our lab have shown that Skp2 is necessary for p27 degradation and cell cycle progression during adipocyte differentiation. Data presented here demonstrate that the anti-inflammatory, anti-obesity phytochemical curcumin blocked Skp2 protein accumulation during early adipocyte hyperplasia. In addition, curcumin dose-dependently induced p27 protein accumulation and G1 arrest of synchronously replicating 3T3-L1 preadipocytes. Of note, p27 protein accumulation occurred in the presence of decreased p27 mRNA suggesting a role for post-transcriptional regulation. In support of this hypothesis, curcumin markedly increased p27 protein half-life as well as attenuated ubiquitin proteasome activity suggesting that inhibition of targeted p27 proteolysis occurred through curcumin-mediated attenuation of Skp2 and 26S proteasome activity. While we observed no cytotoxic effects for curcumin at doses less than 20 µM, it is important to note an increase in apoptotic signaling at concentrations greater than 30 µM. Finally, data presented here demonstrate that the anti-proliferative effect of curcumin was critical for the suppression of adipocyte differentiation and the development of the mature adipocyte. Collectively, our data demonstrate that curcumin-mediated post-transcriptional accumulation of p27 accounts in part for the anti-proliferative effect observed in 3T3-L1 preadipocytes.


Biochimica et Biophysica Acta | 2013

Impact of Obesity on IL-12 Family Gene Expression in Insulin Responsive Tissues

Heesun Nam; Bradley S. Ferguson; Jacqueline M. Stephens; Ron F. Morrison

Mounting evidence has established a role for chronic inflammation in the development of obesity-induced insulin resistance, as genetic ablation of pro-inflammatory cytokines and chemokines elevated in obesity improves insulin signaling in vitro and in vivo. Recent evidence further highlights interleukin (IL)-12 family cytokines as prospective inflammatory mediators linking obesity to insulin resistance. In this study, we present empirical evidence demonstrating that IL-12 family related genes are expressed and regulated in insulin-responsive tissues under conditions of obesity. First, we report that respective mRNAs for each of the known members of this cytokine family are expressed within detectable ranges in WAT, skeletal muscle, liver and heart. Second, we show that these cytokines and their cognate receptors are divergently regulated with genetic obesity in a tissue-specific manner. Third, we demonstrate that select IL-12 family cytokines are regulated in WAT in a manner that is dependent on the developmental stage of obesity as well as the inflammatory progression associated with obesity. Fourth, we report that respective mRNAs for IL-12 cytokines and receptors are also expressed and divergently regulated in cultured adipocytes under conditions of inflammatory stress. To our knowledge, this report is the first study to systemically evaluated mRNA expression of all IL-12 family cytokines and receptors in any tissue under conditions of obesity highlighting select family members as potential mediators linking excess nutrient intake to metabolic diseases such as insulin resistance, diabetes and heart disease.

Collaboration


Dive into the Ron F. Morrison's collaboration.

Top Co-Authors

Avatar

Bradley S. Ferguson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Heesun Nam

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Corinth A. Auld

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karishma M. Fernandes

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Robin G. Hopkins

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Laurie Wideman

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla D. Caccia

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Carrie M. Elks

Pennington Biomedical Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge