Ron Pinhasi
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ron Pinhasi.
Nature | 2015
Iain Mathieson; Iosif Lazaridis; Nadin Rohland; Swapan Mallick; Nick Patterson; Songül Alpaslan Roodenberg; Eadaoin Harney; Kristin Stewardson; Daniel Fernandes; Mario Novak; Kendra Sirak; Cristina Gamba; Eppie R. Jones; Bastien Llamas; Stanislav Dryomov; Joseph K. Pickrell; Juan Luis Arsuaga; José María Bermúdez de Castro; Eudald Carbonell; F.A. Gerritsen; Aleksandr Khokhlov; Pavel Kuznetsov; Marina Lozano; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Manuel Ángel Rojo Guerra; Jacob Roodenberg; Josep Maria Vergès; Johannes Krause
Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe’s first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.
Nature | 2014
Thomas Higham; Katerina Douka; Rachel Wood; Christopher Bronk Ramsey; Fiona Brock; Laura Basell; Marta Camps; Alvaro Arrizabalaga; Javier Baena; Cecillio Barroso-Ruíz; Christopher A. Bergman; Coralie Boitard; Paolo Boscato; Miguel Caparrós; Nicholas J. Conard; Christelle Draily; Alain Froment; Bertila Galván; Paolo Gambassini; Alejandro García-Moreno; Stefano Grimaldi; Paul Haesaerts; Brigitte M. Holt; María-José Iriarte-Chiapusso; Arthur Jelinek; Jesús Francisco Jordá Pardo; José-Manuel Maíllo-Fernández; Anat Marom; Julià Maroto; Mario Menéndez
The timing of Neanderthal disappearance and the extent to which they overlapped with the earliest incoming anatomically modern humans (AMHs) in Eurasia are key questions in palaeoanthropology. Determining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, have hindered reliable dating of the period, as the radiocarbon method reaches its limit at ∼50,000 years ago. Here we apply improved accelerator mass spectrometry 14C techniques to construct robust chronologies from 40 key Mousterian and Neanderthal archaeological sites, ranging from Russia to Spain. Bayesian age modelling was used to generate probability distribution functions to determine the latest appearance date. We show that the Mousterian ended by 41,030–39,260 calibrated years bp (at 95.4% probability) across Europe. We also demonstrate that succeeding ‘transitional’ archaeological industries, one of which has been linked with Neanderthals (Châtelperronian), end at a similar time. Our data indicate that the disappearance of Neanderthals occurred at different times in different regions. Comparing the data with results obtained from the earliest dated AMH sites in Europe, associated with the Uluzzian technocomplex, allows us to quantify the temporal overlap between the two human groups. The results reveal a significant overlap of 2,600–5,400 years (at 95.4% probability). This has important implications for models seeking to explain the cultural, technological and biological elements involved in the replacement of Neanderthals by AMHs. A mosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and symbolic behaviours, as well as possible genetic exchanges, between the two groups.
Nature Communications | 2014
Cristina Gamba; Eppie R. Jones; Matthew D. Teasdale; Russell McLaughlin; Gloria Gonzalez-Fortes; Valeria Mattiangeli; László Domboróczki; Ivett Kővári; Ildikó Pap; Alexandra Anders; Alasdair Whittle; János Dani; Pál Raczky; Thomas Higham; Michael Hofreiter; Daniel G. Bradley; Ron Pinhasi
The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (~22 × ) and seven to ~1 × coverage, to investigate the impact of these on Europe’s genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability. The earliest Neolithic context genome shows a European hunter-gatherer genetic signature and a restricted ancestral population size, suggesting direct contact between cultures after the arrival of the first farmers into Europe. The latest, Iron Age, sample reveals an eastern genomic influence concordant with introduced Steppe burial rites. We observe transition towards lighter pigmentation and surprisingly, no Neolithic presence of lactase persistence.
Nature | 2016
Qiaomei Fu; Cosimo Posth; Mateja Hajdinjak; Martin Petr; Swapan Mallick; Daniel Fernandes; Anja Furtwängler; Wolfgang Haak; Matthias Meyer; Alissa Mittnik; Birgit Nickel; Alexander Peltzer; Nadin Rohland; Viviane Slon; Sahra Talamo; Iosif Lazaridis; Mark Lipson; Iain Mathieson; Stephan Schiffels; Pontus Skoglund; A.P. Derevianko; Nikolai Drozdov; Vyacheslav Slavinsky; Alexander Tsybankov; Renata Grifoni Cremonesi; Francesco Mallegni; Bernard Gély; Eligio Vacca; Manuel Ramón González Morales; Lawrence Guy Straus
Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history.
Nature | 2016
Iosif Lazaridis; Dani Nadel; Gary O. Rollefson; Deborah C. Merrett; Nadin Rohland; Swapan Mallick; Daniel Fernandes; Mario Novak; Beatriz Gamarra; Kendra Sirak; Sarah Connell; Kristin Stewardson; Eadaoin Harney; Qiaomei Fu; Gloria Gonzalez-Fortes; Eppie R. Jones; Songül Alpaslan Roodenberg; György Lengyel; Fanny Bocquentin; Boris Gasparian; Janet Monge; Michael C. Gregg; Vered Eshed; Ahuva-Sivan Mizrahi; Christopher Meiklejohn; F.A. Gerritsen; Luminita Bejenaru; Matthias Blüher; Archie Campbell; Gianpiero L. Cavalleri
We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.
Science | 2015
M. Gallego Llorente; Eppie R. Jones; Anders Eriksson; Veronika Siska; K.W. Arthur; J.W. Arthur; M.C. Curtis; Jay T. Stock; M. Coltorti; P. Pieruccini; S. Stretton; Fiona Brock; Thomas Higham; Yong-Ha Park; Michael Hofreiter; Daniel G. Bradley; Jong Bhak; Ron Pinhasi; Andrea Manica
Ancient African helps to explain the present Tracing the migrations of anatomically modern humans has been complicated by human movements both out of and into Africa, especially in relatively recent history. Gallego Llorente et al. sequenced an Ethiopian individual, “Mota,” who lived approximately 4500 years ago, predating one such wave of individuals into Africa from Eurasia. The genetic information from Mota suggests that present-day Sardinians were the likely source of the Eurasian backflow. Furthermore, 4 to 7% of most African genomes, including Yoruba and Mbuti Pygmies, originated from this Eurasian gene flow. Science, this issue p. 820 Analysis of the genome of an ancient Ethiopian helps us understand recent human movement into Africa. Characterizing genetic diversity in Africa is a crucial step for most analyses reconstructing the evolutionary history of anatomically modern humans. However, historic migrations from Eurasia into Africa have affected many contemporary populations, confounding inferences. Here, we present a 12.5× coverage ancient genome of an Ethiopian male (“Mota”) who lived approximately 4500 years ago. We use this genome to demonstrate that the Eurasian backflow into Africa came from a population closely related to Early Neolithic farmers, who had colonized Europe 4000 years earlier.
Nature Communications | 2015
Eppie R. Jones; Gloria Gonzalez-Fortes; Sarah Connell; Veronika Siska; Anders Eriksson; Rui Martiniano; Russell McLaughlin; Marcos Gallego Llorente; Lara M. Cassidy; Cristina Gamba; Tengiz Meshveliani; Ofer Bar-Yosef; Werner Müller; Anna Belfer-Cohen; Zinovi Matskevich; Nino Jakeli; Thomas Higham; Mathias Currat; David Lordkipanidze; Michael Hofreiter; Andrea Manica; Ron Pinhasi; Daniel G. Bradley
We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ∼45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ∼25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ∼3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.
PLOS ONE | 2015
Ron Pinhasi; Daniel Fernandes; Kendra Sirak; Mario Novak; Sarah Connell; Songül Alpaslan-Roodenberg; F.A. Gerritsen; Vyacheslav Moiseyev; Andrey Gromov; Pál Raczky; Alexandra Anders; Michael Pietrusewsky; Gary O. Rollefson; Marija Jovanovic; Hiep Trinhhoang; Guy Bar-Oz; Marc Oxenham; Hirofumi Matsumura; Michael Hofreiter
The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.
Science | 2014
D. S. Adler; K. N. Wilkinson; S.P.E. Blockley; Darren F. Mark; Ron Pinhasi; B. A. Schmidt-Magee; S. Nahapetyan; C. Mallol; Francesco Berna; P. J. Glauberman; Y. Raczynski-Henk; N. Wales; E. Frahm; O. Joris; Alison MacLeod; Victoria C. Smith; Victoria L. Cullen; Boris Gasparian
An early assemblage of obsidian artifacts Levallois technology is the name for the stone knapping technique used to create tools thousands of years ago. The technique appeared in the archeological record across Eurasia 200 to 300 thousand years ago (ka) and appeared earlier in Africa. Adler et al. challenge the hypothesis that the techniques appearance in Eurasia was the result of the expansion of hominins from Africa. Levallois obsidian artifacts in the southern Caucasus, dated at 335 to 325 ka, are the oldest in Eurasia. This suggests that Levallois technology may have evolved independently in different hominin populations. Stone technology cannot thus be used as a reliable indicator of Paleolithic human population change and expansion. Science, this issue p. 1609 An assemblage of obsidian artifacts suggests independent origins of stone knapping in different hominin populations. The Lower to Middle Paleolithic transition (~400,000 to 200,000 years ago) is marked by technical, behavioral, and anatomical changes among hominin populations throughout Africa and Eurasia. The replacement of bifacial stone tools, such as handaxes, by tools made on flakes detached from Levallois cores documents the most important conceptual shift in stone tool production strategies since the advent of bifacial technology more than one million years earlier and has been argued to result from the expansion of archaic Homo sapiens out of Africa. Our data from Nor Geghi 1, Armenia, record the earliest synchronic use of bifacial and Levallois technology outside Africa and are consistent with the hypothesis that this transition occurred independently within geographically dispersed, technologically precocious hominin populations with a shared technological ancestry.
Nature | 2016
Pontus Skoglund; Cosimo Posth; Kendra Sirak; Matthew Spriggs; Frédérique Valentin; Stuart Bedford; Geoffrey Clark; Christian Reepmeyer; Fiona Petchey; Daniel Fernandes; Qiaomei Fu; Eadaoin Harney; Mark Lipson; Swapan Mallick; Mario Novak; Nadine Rohland; Kristin Stewardson; Syafiq Abdullah; Murray P. Cox; Françoise R. Friedlaender; Jonathan S. Friedlaender; Toomas Kivisild; George Koki; Pradiptajati Kusuma; D. Andrew Merriwether; F. X. Ricaut; Joseph Wee; Nick Patterson; Johannes Krause; Ron Pinhasi
The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100–2,700 years before present) and one from Tonga (about 2,700–2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.