Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rona Barron is active.

Publication


Featured researches published by Rona Barron.


The EMBO Journal | 1999

A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy

Jean Manson; Elizabeth Jamieson; Herbert Baybutt; Nadia L. Tuzi; Rona Barron; Irene McConnell; Robert A. Somerville; James Ironside; Robert G. Will; Man Sun Sy; David W. Melton; James Hope; Christopher J. Bostock

A mutation equivalent to P102L in the human PrP gene, associated with Gerstmann–Straussler syndrome (GSS), has been introduced into the murine PrP gene by gene targeting. Mice homozygous for this mutation (101LL) showed no spontaneous transmissible spongiform encephalopathy (TSE) disease, but had incubation times dramatically different from wild‐type mice following inoculation with different TSE sources. Inoculation with GSS produced disease in 101LL mice in 288 days. Disease was transmitted from these mice to both wild‐type (226 days) and 101LL mice (148 days). In contrast, 101LL mice infected with ME7 had prolonged incubation times (338 days) compared with wild‐type mice (161 days). The 101L mutation does not, therefore, produce any spontaneous genetic disease in mice but significantly alters the incubation time of TSE infection. Additionally, a rapid TSE transmission was demonstrated despite extremely low levels of disease‐associated PrP.


Journal of Biological Chemistry | 2007

High Titers of Transmissible Spongiform Encephalopathy Infectivity Associated with Extremely Low Levels of PrPSc in Vivo

Rona Barron; Susan L. Campbell; Declan King; Anne Bellon; Karen E. Chapman; R. Anthony Williamson; Jean Manson

Diagnosis of transmissible spongiform encephalopathy (TSE) disease in humans and ruminants relies on the detection in post-mortem brain tissue of the protease-resistant form of the host glycoprotein PrP. The presence of this abnormal isoform (PrPSc) in tissues is taken as indicative of the presence of TSE infectivity. Here we demonstrate conclusively that high titers of TSE infectivity can be present in brain tissue of animals that show clinical and vacuolar signs of TSE disease but contain low or undetectable levels of PrPSc. This work questions the correlation between PrPSc level and the titer of infectivity and shows that tissues containing little or no proteinase K-resistant PrP can be infectious and harbor high titers of TSE infectivity. Reliance on protease-resistant PrPSc as a sole measure of infectivity may therefore in some instances significantly underestimate biological properties of diagnostic samples, thereby undermining efforts to contain and eradicate TSEs.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Accumulation of prion protein in the brain that is not associated with transmissible disease

Pedro Piccardo; Jean Manson; Declan King; Bernardino Ghetti; Rona Barron

Prion diseases or transmissible spongiform encephalopathies are characterized histopathologically by the accumulation of prion protein (PrP) ranging from diffuse deposits to amyloid plaques. Moreover, pathologic PrP isoforms (PrPSc) are detected by immunoblot analysis and used both as diagnostic markers of disease and as indicators of the presence of infectivity in tissues. It is not known which forms of PrP are associated with infectivity. To address this question, we performed bioassays using human brain extracts from two cases with phenotypically distinct forms of familial prion disease (Gerstmann-Sträussler-Scheinker P102L). Both cases had PrP accumulations in the brain, but each had different PrPSc isoforms. Only one of the brains had spongiform degeneration. Tissue from this case transmitted disease efficiently to transgenic mice (Tg PrP101LL), resulting in spongiform encephalopathy. In contrast, inoculation of tissue from the case with no spongiform degeneration resulted in almost complete absence of disease transmission but elicited striking PrP-amyloid deposition in several recipient mouse brains. Brains of these mice failed to transmit any neurological disease on passage, but PrP-amyloid deposition was again observed in the brains of recipient mice. These data suggest the possible isolation of an infectious agent that promotes PrP amyloidogenesis in the absence of a spongiform encephalopathy. Alternatively, the infectious agent may be rendered nonpathogenic by sequestration in amyloid plaques, or PrP amyloid can seed amyloid accumulation in the brain, causing a proteinopathy that is unrelated to prion disease. Formation of PrP amyloid may therefore not necessarily be a reliable marker of transmissible spongiform encephalopathy infectivity.


The EMBO Journal | 2001

Changing a single amino acid in the N-terminus of murine PrP alters TSE incubation time across three species barriers

Rona Barron; Val Thomson; Elizabeth Jamieson; David W. Melton; James Ironside; Robert G. Will; Jean Manson

The PrP gene of the host exerts a major influence over the outcome of transmissible spongiform encephalopathy (TSE) disease, but the mechanism by which this is achieved is not understood. We have introduced a specific mutation into the endogenous murine PrP gene using gene targeting to produce transgenic mice with a single amino acid alteration (proline to leucine) at amino acid position 101 in their PrP protein (P101L). The effect of this alteration on incubation time, targeting and PrPSc formation has been studied in TSE‐infected animals. Transgenic mice carrying the P101L mutation in PrP have remarkable differences in incubation time and targeting of central nervous system pathology compared with wild‐type littermates, following inoculation with infectivity from human, hamster, sheep and murine sources. This single mutation can alter incubation time across three species barriers in a strain‐dependent manner. These findings suggest a critical role for the structurally ‘flexible’ region of PrP in agent replication and targeting of TSE pathology.


PLOS Biology | 2008

Host PrP Glycosylation: A Major Factor Determining the Outcome of Prion Infection

Nadia L. Tuzi; Enrico Cancellotti; Herbert Baybutt; Lorraine Blackford; Barry Bradford; Chris Plinston; Anne Coghill; Patricia Hart; Pedro Piccardo; Rona Barron; Jean Manson

The expression of the prion protein (PrP) is essential for transmissible spongiform encephalopathy (TSE) or prion diseases to occur, but the underlying mechanism of infection remains unresolved. To address the hypothesis that glycosylation of host PrP is a major factor influencing TSE infection, we have inoculated gene-targeted transgenic mice that have restricted N-linked glycosylation of PrP with three TSE strains. We have uniquely demonstrated that mice expressing only unglycosylated PrP can sustain a TSE infection, despite altered cellular location of the host PrP. Moreover we have shown that brain material from mice infected with TSE that have only unglycosylated PrPSc is capable of transmitting infection to wild-type mice, demonstrating that glycosylation of PrP is not essential for establishing infection within a host or for transmitting TSE infectivity to a new host. We have further dissected the requirement of each glycosylation site and have shown that different TSE strains have dramatically different requirements for each of the glycosylation sites of host PrP, and moreover, we have shown that the host PrP has a major role in determining the glycosylation state of de novo generated PrPSc.


Journal of Virology | 2011

Increased Susceptibility of Human-PrP Transgenic Mice to Bovine Spongiform Encephalopathy Infection following Passage in Sheep

Chris Plinston; Patricia Hart; Angela Chong; Nora Hunter; James Foster; Pedro Piccardo; Jean Manson; Rona Barron

ABSTRACT The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.


Journal of General Virology | 2012

Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein

Rona Wilson; Chris Plinston; Nora Hunter; Cristina Casalone; Cristiano Corona; Fabrizio Tagliavini; Silvia Suardi; Margherita Ruggerone; Fabio Moda; Silvia Graziano; Marco Sbriccoli; Franco Cardone; Maurizio Pocchiari; Loredana Ingrosso; Thierry Baron; Juergen A. Richt; Olivier Andreoletti; M. M. Simmons; Richard Lockey; Jean Manson; Rona Barron

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


PLOS ONE | 2012

Prion Seeding Activities of Mouse Scrapie Strains with Divergent PrPSc Protease Sensitivities and Amyloid Plaque Content Using RT-QuIC and eQuIC

Sarah Vascellari; Christina D. Orrú; Andrew G. Hughson; Declan King; Rona Barron; Jason M. Wilham; Gerald S. Baron; Brent Race; Alessandra Pani; Byron Caughey

Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.


Journal of Virology | 2010

Glycosylation of PrPC Determines Timing of Neuroinvasion and Targeting in the Brain following Transmissible Spongiform Encephalopathy Infection by a Peripheral Route

Enrico Cancellotti; Barry Bradford; Nadia L. Tuzi; Raymond D. Hickey; Debbie Brown; Karen L. Brown; Rona Barron; Dorothy Kisielewski; Pedro Piccardo; Jean Manson

ABSTRACT Transmissible spongiform encephalopathy (TSE) infectivity naturally spreads from site of entry in the periphery to the central nervous system where pathological lesions are formed. Several routes and cells within the host have been identified as important for facilitating the infectious process. Expression of the glycoprotein cellular PrP (PrPC) is considered a key factor for replication of infectivity in the central nervous system (CNS) and its transport to the brain, and it has been suggested that the infectious agent propagates from cell to cell via a domino-like effect. However, precisely how this is achieved and what involvement the different glycoforms of PrP have in these processes remain to be determined. To address this issue, we have used our unique models of gene-targeted transgenic mice expressing different glycosylated forms of PrP. Two TSE strains were inoculated intraperitoneally into these mice to assess the contribution of diglycosylated, monoglycosylated, and unglycosylated PrP in spreading of infectivity to the brain. This study demonstrates that glycosylation of host PrP has a profound effect in determining the outcome of disease. Lack of diglycosylated PrP slowed or prevented disease onset after peripheral challenge, suggesting an important role for fully glycosylated PrP in either the replication of the infectious agent in the periphery or its transport to the CNS. Moreover, mice expressing unglycosylated PrP did not develop clinical disease, and mice expressing monoglycosylated PrP showed strikingly different neuropathologic features compared to those expressing diglycosylated PrP. This demonstrates that targeting in the brain following peripheral inoculation is profoundly influenced by the glycosylation status of host PrP.


Biochemical Society Transactions | 2006

The transmissible spongiform encephalopathies: emerging and declining epidemics.

Jean Manson; Enrico Cancellotti; Patricia Hart; Matthew Bishop; Rona Barron

TSEs (transmissible spongiform encephalopathies) are neurodegenerative diseases of various mammalian species, the best known of which include BSE (bovine spongiform encephalopathies) in cattle, CJD (Creutzfeldt-Jakob disease) in humans, scrapie in sheep and CWD (chronic wasting disease) in deer. This review examines the emergence of various TSE strains and their transmission, and discusses disease surveillance and control.

Collaboration


Dive into the Rona Barron's collaboration.

Top Co-Authors

Avatar

Jean Manson

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Declan King

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Barr

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Mark Head

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nora Hunter

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge