Rona Yaeger
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rona Yaeger.
Nature | 2012
Sandra Misale; Rona Yaeger; Sebastijan Hobor; Elisa Scala; Manickam Janakiraman; David Liska; Emanuele Valtorta; Roberta Schiavo; Michela Buscarino; Giulia Siravegna; Katia Bencardino; Andrea Cercek; Chin Tung Chen; Silvio Veronese; Carlo Zanon; Andrea Sartore-Bianchi; Marcello Gambacorta; Margherita Gallicchio; Efsevia Vakiani; Valentina Boscaro; Enzo Medico; Martin R. Weiser; Salvatore Siena; Federica Di Nicolantonio; David B. Solit; Alberto Bardelli
A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.
Nature Medicine | 2017
Ahmet Zehir; Ryma Benayed; Ronak Shah; Aijazuddin Syed; Sumit Middha; Hyunjae R. Kim; Preethi Srinivasan; Jianjiong Gao; Debyani Chakravarty; Sean M. Devlin; Matthew D. Hellmann; David Barron; Alison M. Schram; Meera Hameed; Snjezana Dogan; Dara S. Ross; Jaclyn F. Hechtman; Deborah DeLair; Jinjuan Yao; Diana Mandelker; Donavan T. Cheng; Raghu Chandramohan; Abhinita Mohanty; Ryan Ptashkin; Gowtham Jayakumaran; Meera Prasad; Mustafa H Syed; Anoop Balakrishnan Rema; Zhen Y Liu; Khedoudja Nafa
Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.
Cancer Research | 2014
Moriah H. Nissan; Christine A. Pratilas; Alexis Jones; Ricardo Ramirez; Helen H. Won; Cailian Liu; Shakuntala Tiwari; Li Kong; Aphrothiti J. Hanrahan; Zhan Yao; Taha Merghoub; Antoni Ribas; Paul B. Chapman; Rona Yaeger; Barry S. Taylor; Nikolaus Schultz; Michael F. Berger; Neal Rosen; David B. Solit
Melanoma is a disease characterized by lesions that activate ERK. Although 70% of cutaneous melanomas harbor activating mutations in the BRAF and NRAS genes, the alterations that drive tumor progression in the remaining 30% are largely undefined. Vemurafenib, a selective inhibitor of RAF kinases, has clinical utility restricted to BRAF-mutant tumors. MEK inhibitors, which have shown clinical activity in NRAS-mutant melanoma, may be effective in other ERK pathway-dependent settings. Here, we investigated a panel of melanoma cell lines wild type for BRAF and NRAS to determine the genetic alteration driving their transformation and their dependence on ERK signaling in order to elucidate a candidate set for MEK inhibitor treatment. A cohort of the BRAF/RAS wild type cell lines with high levels of RAS-GTP had loss of NF1, a RAS GTPase activating protein. In these cell lines, the MEK inhibitor PD0325901 inhibited ERK phosphorylation, but also relieved feedback inhibition of RAS, resulting in induction of pMEK and a rapid rebound in ERK signaling. In contrast, the MEK inhibitor trametinib impaired the adaptive response of cells to ERK inhibition, leading to sustained suppression of ERK signaling and significant antitumor effects. Notably, alterations in NF1 frequently co-occurred with RAS and BRAF alterations in melanoma. In the setting of BRAF(V600E), NF1 loss abrogated negative feedback on RAS activation, resulting in elevated activation of RAS-GTP and resistance to RAF, but not MEK, inhibitors. We conclude that loss of NF1 is common in cutaneous melanoma and is associated with RAS activation, MEK-dependence, and resistance to RAF inhibition.
Genome Biology | 2014
A. Rose Brannon; Efsevia Vakiani; Brooke E. Sylvester; Sasinya N. Scott; Gregory McDermott; Ronak Shah; Krishan Kania; Agnes Viale; Dayna Oschwald; Vladimir Vacic; Anne-Katrin Emde; Andrea Cercek; Rona Yaeger; Nancy E. Kemeny; Leonard Saltz; Jinru Shia; Michael I. D’Angelica; Martin R. Weiser; David B. Solit; Michael F. Berger
BackgroundColorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors.ResultsWe performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations.ConclusionsColorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.
Clinical Cancer Research | 2015
Rona Yaeger; Andrea Cercek; Eileen Mary O'Reilly; Diane Lauren Reidy; Nancy E. Kemeny; Tamar Wolinsky; Marinela Capanu; Marc J. Gollub; Neal Rosen; Michael F. Berger; Mario E. Lacouture; Efsevia Vakiani; Leonard Saltz
Purpose: BRAF-mutant metastatic colorectal cancer (mCRC) forms an aggressive subset of colorectal cancer with minimal response to selective RAF inhibitors. Preclinical data show that reactivation of EGFR signaling occurs in colorectal tumor cells treated with RAF inhibitors and that the addition of an EGFR inhibitor enhances antitumor activity. These data suggest that combined therapy with RAF and EGFR inhibitors could be an effective strategy for treating BRAF V600E mCRC. Experimental Design: We undertook a pilot trial to assess the response rate and safety of the BRAF inhibitor vemurafenib combined with anti-EGFR antibody panitumumab in patients with BRAF-mutant mCRC. Patients received standard approved doses of panitumumab and vemurafenib. Results: Fifteen patients were treated. Performance status was Eastern Cooperative Oncology Group (ECOG) 0 in 4 patients (27%) and ECOG 1 in 11 patients (73%). All patients had progressed through at least one standard treatment regimen, and 8 (53%) had received previous fluoropyrimidine, oxaliplatin, and irinotecan chemotherapy. Treatment was well tolerated, with less cutaneous toxicity than would be expected with either agent, and no cases of keratoacanthomas/squamous cell carcinomas. Tumor regressions were seen in 10 of 12 evaluable patients with partial responses in 2 patients (100% and 64% regression lasting 40 and 24 weeks, respectively), and stable disease lasting over 6 months in 2 patients. Conclusions: Combined RAF and EGFR inhibition is well tolerated, with less cutaneous toxicity than would be expected with either agent, and results in modest clinical activity in this highly aggressive and chemoresistant subset of CRC. Clin Cancer Res; 21(6); 1313–20. ©2015 AACR.
Cancer | 2014
Rona Yaeger; Andrea Cercek; Joanne F. Chou; Brooke E. Sylvester; Nancy E. Kemeny; Jaclyn F. Hechtman; Marc Ladanyi; Neal Rosen; Martin R. Weiser; Marinela Capanu; David B. Solit; Michael I. D'Angelica; Efsevia Vakiani; Leonard Saltz
BRAF mutations occur in 5% to 11% of patients with metastatic colorectal cancer (mCRC) and have been associated with poor prognosis. The current study was undertaken to determine the clinicopathologic characteristics, PIK3CA (phosphatidylinositol‐4,5‐bisphosphate 3‐kinase, catalytic subunit alpha) mutation frequency, and outcomes after metastasectomy in patients with BRAF‐mutant mCRC.
Journal of Clinical Oncology | 2016
Zsofia K. Stadler; Francesca Battaglin; Sumit Middha; Jaclyn F. Hechtman; Christina Tran; Andrea Cercek; Rona Yaeger; Neil Howard Segal; Anna M. Varghese; Diane Reidy-Lagunes; Nancy E. Kemeny; Erin E. Salo-Mullen; Asad Ashraf; Martin R. Weiser; Julio Garcia-Aguilar; Mark E. Robson; Kenneth Offit; Maria E. Arcila; Michael F. Berger; Jinru Shia; David B. Solit; Leonard Saltz
PURPOSE Tumor screening for Lynch syndrome is recommended in all or most patients with colorectal cancer (CRC). In metastatic CRC, sequencing of RAS/BRAF is necessary to guide clinical management. We hypothesized that a next-generation sequencing (NGS) panel that identifies RAS/BRAF and other actionable mutations could also reliably identify tumors with DNA mismatch repair protein deficiency (MMR-D) on the basis of increased mutational load. METHODS We identified all CRCs that underwent genomic mutation profiling with a custom NGS assay (MSK-IMPACT) between March 2014 and July 2015. Tumor mutational load, with exclusion of copy number changes, was determined for each case and compared with MMR status as determined by routine immunohistochemistry. RESULTS Tumors from 224 patients with unique CRC analyzed for MMR status also underwent MSK-IMPACT. Thirteen percent (n = 28) exhibited MMR-D by immunohistochemistry. Using the 341-gene assay, 100% of the 193 tumors with < 20 mutations were MMR-proficient. Of 31 tumors with ≥ 20 mutations, 28 (90%) were MMR-D. The three remaining tumors were easily identified as being distinct from the MMR-D tumors with > 150 mutations each. Each of these tumors harbored the P286R hotspot POLE mutation consistent with the ultramutator phenotype. Among MMR-D tumors, the median number of mutations was 50 (range, 20 to 90) compared with six (range, 0 to 17) in MMR-proficient/POLE wild-type tumors (P < .001). With a mutational load cutoff of ≥ 20 and < 150 for MMR-D detection, sensitivity and specificity were both 1.0 (95% CI, 0.93 to 1.0). CONCLUSION A cutoff for mutational load can be identified via multigene NGS tumor profiling, which provides a highly accurate means of screening for MMR-D in the same assay that is used for tumor genotyping.
JCO Precision Oncology | 2017
Debyani Chakravarty; Jianjiong Gao; Sarah Phillips; Ritika Kundra; Hongxin Zhang; Jiaojiao Wang; Julia E. Rudolph; Rona Yaeger; Tara Soumerai; Moriah H. Nissan; Matthew T. Chang; Sarat Chandarlapaty; Tiffany A. Traina; Paul K. Paik; Alan L. Ho; Feras M. Hantash; Andrew Grupe; Shrujal S. Baxi; Margaret K. Callahan; Alexandra Snyder; Ping Chi; Daniel C. Danila; Mrinal M. Gounder; James J. Harding; Matthew D. Hellmann; Gopa Iyer; Yelena Y. Janjigian; Thomas Kaley; Douglas A. Levine; Maeve Aine Lowery
PURPOSE With prospective clinical sequencing of tumors emerging as a mainstay in cancer care, there is an urgent need for a clinical support tool that distills the clinical implications associated with specific mutation events into a standardized and easily interpretable format. To this end, we developed OncoKB, an expert-guided precision oncology knowledge base. METHODS OncoKB annotates the biological and oncogenic effect and the prognostic and predictive significance of somatic molecular alterations. Potential treatment implications are stratified by the level of evidence that a specific molecular alteration is predictive of drug response based on US Food and Drug Administration (FDA) labeling, National Comprehensive Cancer Network (NCCN) guidelines, disease-focused expert group recommendations and the scientific literature. RESULTS To date, over 3000 unique mutations, fusions, and copy number alterations in 418 cancer-associated genes have been annotated. To test the utility of OncoKB, we annotated all genomic events in 5983 primary tumor samples in 19 cancer types. Forty-one percent of samples harbored at least one potentially actionable alteration, of which 7.5% were predictive of clinical benefit from a standard treatment. OncoKB annotations are available through a public web resource (http://oncokb.org/) and are also incorporated into the cBioPortal for Cancer Genomics to facilitate the interpretation of genomic alterations by physicians and researchers. CONCLUSION OncoKB, a comprehensive and curated precision oncology knowledge base, offers oncologists detailed, evidence-based information about individual somatic mutations and structural alterations present in patient tumors with the goal of supporting optimal treatment decisions.
Cancer | 2015
Rona Yaeger; Elizabeth Cowell; Joanne F. Chou; Alexandra N. Gewirtz; Laetitia Borsu; Efsevia Vakiani; David B. Solit; Neal Rosen; Marinela Capanu; Marc Ladanyi; Nancy E. Kemeny
RAS and PIK3CA mutations in metastatic colorectal cancer (mCRC) have been associated with worse survival. We sought to evaluate the impact of RAS and PIK3CA mutations on cumulative incidence of metastasis to potentially curable sites of liver and lung and other sites such as bone and brain.
Nature | 2017
Zhan Yao; Rona Yaeger; Vanessa Rodrik-Outmezguine; Anthony Tao; Neilawattie M. Torres; Matthew T. Chang; Matthias Drosten; Huiyong Zhao; Fabiola Cecchi; Todd Hembrough; Judith Michels; H. Baumert; Linde A. Miles; Naomi M. Campbell; Elisa de Stanchina; David B. Solit; Mariano Barbacid; Barry S. Taylor; Neal Rosen
Approximately 200 BRAF mutant alleles have been identified in human tumours. Activating BRAF mutants cause feedback inhibition of GTP-bound RAS, are RAS-independent and signal either as active monomers (class 1) or constitutively active dimers (class 2). Here we characterize a third class of BRAF mutants—those that have impaired kinase activity or are kinase-dead. These mutants are sensitive to ERK-mediated feedback and their activation of signalling is RAS-dependent. The mutants bind more tightly than wild-type BRAF to RAS–GTP, and their binding to and activation of wild-type CRAF is enhanced, leading to increased ERK signalling. The model suggests that dysregulation of signalling by these mutants in tumours requires coexistent mechanisms for maintaining RAS activation despite ERK-dependent feedback. Consistent with this hypothesis, melanomas with these class 3 BRAF mutations also harbour RAS mutations or NF1 deletions. By contrast, in lung and colorectal cancers with class 3 BRAF mutants, RAS is typically activated by receptor tyrosine kinase signalling. These tumours are sensitive to the inhibition of RAS activation by inhibitors of receptor tyrosine kinases. We have thus defined three distinct functional classes of BRAF mutants in human tumours. The mutants activate ERK signalling by different mechanisms that dictate their sensitivity to therapeutic inhibitors of the pathway.