Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald D. Gorham is active.

Publication


Featured researches published by Ronald D. Gorham.


Annals of Biomedical Engineering | 2011

Electrostatic Clustering and Free Energy Calculations Provide a Foundation for Protein Design and Optimization

Ronald D. Gorham; Chris A. Kieslich; Dimitrios Morikis

Electrostatic interactions are ubiquitous in proteins and dictate stability and function. In this review, we discuss several methods for the analysis of electrostatics in protein–protein interactions. We discuss alanine-scanning mutagenesis, Poisson–Boltzmann electrostatics, free energy calculations, electrostatic similarity distances, and hierarchical clustering of electrostatic potentials. Our recently developed computational framework, known as Analysis of Electrostatic Similarities Of Proteins (AESOP), incorporates these tools to efficiently elucidate the role of electrostatic potentials in protein interactions. We present the application of AESOP to several proteins and protein complexes, for which charge is purported to facilitate protein association. Specifically, we illustrate how recent work has shaped the formulation of electrostatic calculations, the correlation of electrostatic free energies and electrostatic potential clustering results with experimental binding and activity data, the pH dependence of protein stability and association, the design of mutant proteins with enhanced immunological activity, and how AESOP can expose deficiencies in structural models and experimental data. This integrative approach can be utilized to develop mechanistic models and to guide experimental studies by predicting mutations with desired physicochemical properties and function. Alteration of the electrostatic properties of proteins offers a basis for the design of proteins with optimized binding and activity.


Chemical Biology & Drug Design | 2012

Molecular Dynamics in Drug Design: New Generations of Compstatin Analogs

Phanourios Tamamis; Aliana López de Victoria; Ronald D. Gorham; Meghan L. Bellows-Peterson; Panayiota Pierou; Christodoulos A. Floudas; Dimitrios Morikis; Georgios Archontis

We report the computational and rational design of new generations of potential peptide‐based inhibitors of the complement protein C3 from the compstatin family. The binding efficacy of the peptides is tested by extensive molecular dynamics‐based structural and physicochemical analysis, using 32 atomic detail trajectories in explicit water for 22 peptides bound to human, rat or mouse target protein C3, with a total of 257 ns. The criteria for the new design are: (i) optimization for C3 affinity and for the balance between hydrophobicity and polarity to improve solubility compared to known compstatin analogs; and (ii) development of dual specificity, human‐rat/mouse C3 inhibitors, which could be used in animal disease models. Three of the new analogs are analyzed in more detail as they possess strong and novel binding characteristics and are promising candidates for further optimization. This work paves the way for the development of an improved therapeutic for age‐related macular degeneration, and other complement system‐mediated diseases, compared to known compstatin variants.


Biopolymers | 2011

An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data.

Ronald D. Gorham; Chris A. Kieslich; Aaron Nichols; Noriko U. Sausman; Marisse Foronda; Dimitrios Morikis

For systems involving highly and oppositely charged proteins, electrostatic forces dominate association and contribute to biomolecular complex stability. Using experimental or theoretical alanine-scanning mutagenesis, it is possible to elucidate the contribution of individual ionizable amino acids to protein association. We evaluated our electrostatic free energy calculations by comparing calculated and experimental data for alanine mutants of five protein complexes. We calculated Poisson-Boltzmann electrostatic free energies based on a thermodynamic cycle, which incorporates association in a reference (Coulombic) and solvated (solution) state, as well as solvation effects. We observe that Coulombic and solvation free energy values correlate with experimental data in highly and oppositely charged systems, but not in systems comprised of similarly charged proteins. We also observe that correlation between solution and experimental free energies is dependent on dielectric coefficient selection for the protein interior. Free energy correlations improve as protein dielectric coefficient increases, suggesting that the protein interior experiences moderate dielectric screening, despite being shielded from solvent. We propose that higher dielectric coefficients may be necessary to more accurately predict protein-protein association. Additionally, our data suggest that Coulombic potential calculations alone may be sufficient to predict relative binding of protein mutants.


Chemical Biology & Drug Design | 2011

A New Generation of Potent Complement Inhibitors of the Compstatin Family

Aliana López de Victoria; Ronald D. Gorham; Meghan L. Bellows-Peterson; Jun Ling; David D. Lo; Christodoulos A. Floudas; Dimitrios Morikis

Compstatin family peptides are potent inhibitors of the complement system and promising drug candidates against diseases involving under‐regulated complement activation. Compstatin is a 13‐residue cyclized peptide that inhibits cleavage of complement protein C3, preventing downstream complement activation. We present three new compstatin variants, characterized by tryptophan replacement at positions 1 and/or 13. Peptide design was based on physicochemical reasoning and was inspired by earlier work, which identified tryptophan substitutions at positions 1 and 13 in peptides with predicted C3c binding abilities [Bellows M.L., Fung H.K., Taylor M.S., Floudas C.A., López de Victoria A., Morikis D. (2010) Biophys J; 98: 2337–2346]. The new variants preserve distinct polar and nonpolar surfaces of compstatin, but have altered local interaction capabilities with C3. All three peptides exhibited potent C3 binding by surface plasmon resonance and potent complement inhibition by enzyme‐linked immunosorbent assay. We also present enzyme‐linked immunosorbent assay data and detailed surface plasmon resonance kinetic data of three peptides from previous computational design.


BMC Biotechnology | 2015

Hybrid flagellin as a T cell independent vaccine scaffold

Kaila M. Bennett; Ronald D. Gorham; Veronica Gusti; Lien Trinh; Dimitrios Morikis; David D. Lo

BackgroundTo extend the potency of vaccines against infectious diseases, vaccines should be able to exploit multiple arms of the immune system. One component of the immune system that is under-used in vaccine design is the subset of B cells known to be capable of responding to repetitive antigenic epitopes and differentiate into plasma cells even in the absence of T cell help (T-independent, TI).ResultsTo target vaccine responses from T-independent B cells, we reengineered a bacterial Flagellin (FliC) by replacing its exposed D3 domain with a viral envelope protein from Dengue virus (DENV2). The resulting hybrid FliC protein (hFliC) was able to form stable filaments decorated with conformationally intact DENV2 envelope domains. These filaments were not only capable of inducing a T cell-dependent (TD) humoral antibody response, but also significant IgM and IgG3 antibody response in a helper T cell repertoire-restricted transgenic mouse model.ConclusionsOur results provide proof-of-principle demonstration that a reengineered hybrid FliC could be used as a platform for polymeric subunit vaccines, enhancing T cell-dependent and possibly inducing T-independent antibody responses from B-1 B cells as well.


PLOS ONE | 2016

Quantitative Modeling of the Alternative Pathway of the Complement System.

Nehemiah Zewde; Ronald D. Gorham; Angel Dorado; Dimitrios Morikis

The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection.


Journal of Medicinal Chemistry | 2015

New Compstatin Peptides Containing N-Terminal Extensions and Non-Natural Amino Acids Exhibit Potent Complement Inhibition and Improved Solubility Characteristics

Ronald D. Gorham; David L. Forest; George A. Khoury; James Smadbeck; Consuelo N. Beecher; Evangeline D. Healy; Phanourios Tamamis; Georgios Archontis; Cynthia K. Larive; Christodoulos A. Floudas; Monte J. Radeke; Lincoln V. Johnson; Dimitrios Morikis

Compstatin peptides are complement inhibitors that bind and inhibit cleavage of complement C3. Peptide binding is enhanced by hydrophobic interactions; however, poor solubility promotes aggregation in aqueous environments. We have designed new compstatin peptides derived from the W4A9 sequence (Ac-ICVWQDWGAHRCT-NH2, cyclized between C2 and C12), based on structural, computational, and experimental studies. Furthermore, we developed and utilized a computational framework for the design of peptides containing non-natural amino acids. These new compstatin peptides contain polar N-terminal extensions and non-natural amino acid substitutions at positions 4 and 9. Peptides with α-modified non-natural alanine analogs at position 9, as well as peptides containing only N-terminal polar extensions, exhibited similar activity compared to W4A9, as quantified via ELISA, hemolytic, and cell-based assays, and showed improved solubility, as measured by UV absorbance and reverse-phase HPLC experiments. Because of their potency and solubility, these peptides are promising candidates for therapeutic development in numerous complement-mediated diseases.


Molecular Informatics | 2011

Electrostatic Similarity Determination Using Multiresolution Analysis.

Huseyin Hakkoymaz; Chris A. Kieslich; Ronald D. Gorham; Dimitrios Gunopulos; Dimitrios Morikis

Molecular similarity is an important tool in protein and drug design for analyzing the quantitative relationships between physicochemical properties of two molecules. We present a family of similarity measures which exploits the ability of wavelet transformation to analyze the spectral components of physicochemical properties and suggests a sensitive way for measuring similarities of biological molecules. In order to investigate how effective wavelet‐based similarity measures were against conventional measures, we defined several patterns which involve scalar or topological changes in the distribution of electrostatic properties. The wavelet‐based measures were more successful in discriminating these patterns in contrast to the current state‐of‐art similarity measures. We also present the validity of wavelet‐based similarity measures through the hierarchical clustering of two protein datasets consisting of families of homologous domains and alanine scan mutants. This type of similarity analysis is useful for protein structure‐function studies and protein design.


Biophysical Journal | 2017

AESOP: A Python Library for Investigating Electrostatics in Protein Interactions

Reed E.S. Harrison; Rohith R. Mohan; Ronald D. Gorham; Chris A. Kieslich; Dimitrios Morikis

Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association.


Molecular Biology International | 2015

Electrostatic Interactions between Complement Regulator CD46(SCR1-2) and Adenovirus Ad11/Ad21 Fiber Protein Knob.

Carl Z. Chen; Ronald D. Gorham; Zied Gaieb; Dimitrios Morikis

Adenoviruses bind to a variety of human cells to cause infection. Both the B2 adenovirus 11 and B1 adenovirus 21 use protein knobs to bind to complement regulator CD46(SCR1-2) in order to gain entry into host cells. In each complex, the two proteins are highly negatively charged but bind to each other at an interface with oppositely charged surface patches. We computationally generated single-alanine mutants of charged residues in the complexes CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. We used electrostatic clustering and Poisson-Boltzmann free energy calculations to propose a hypothesis on the role of electrostatics in association. Our results delineate specific interfacial electrostatic interactions that are critical for association in both CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. These results will serve as a predictive tool in the selection of mutants with desired binding affinity in experimental mutagenesis studies. This study will also serve as a foundation for the design of inhibitors to treat adenovirus infections.

Collaboration


Dive into the Ronald D. Gorham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge