Ronald G. Jubin
Schering-Plough
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronald G. Jubin.
Nature Structural & Molecular Biology | 2002
Jeffrey S. Kieft; Kaihong Zhou; Angie Grech; Ronald G. Jubin; Jennifer A. Doudna
The hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA drives internal initiation of viral protein synthesis during host cell infection. In the tertiary structure of the IRES RNA, two helical junctions create recognition sites for direct binding of the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). The 2.8 Å resolution structure of the IIIabc four-way junction, which is critical for binding eIF3, reveals how junction nucleotides interact with an adjacent helix to position regions directly involved in eIF3 recognition. Two of the emergent helices stack to form a nearly continuous A-form duplex, while stacking of the other two helices is interrupted by the insertion of junction residues into the helix minor groove. This distorted stack probably serves as an important recognition surface for the translational machinery.
Journal of Virology | 2000
Ronald G. Jubin; Nicole Vantuno; Jeffrey S. Kieft; Michael G. Murray; Jennifer A. Doudna; Johnson Y.N. Lau; Bahige M. Baroudy
ABSTRACT The hepatitis C virus (HCV) internal ribosome entry site (IRES) is a highly structured RNA element that directs cap-independent translation of the viral polyprotein. Morpholino antisense oligonucleotides directed towards stem loop IIId drastically reduced HCV IRES activity. Mutagenesis studies of this region showed that the GGG triplet (nucleotides 266 through 268) of the hexanucleotide apical loop of stem loop IIId is essential for IRES activity both in vitro and in vivo. Sequence comparison showed that apical loop nucleotides (UUGGGU) were absolutely conserved across HCV genotypes and the GGG triplet was strongly conserved among related Flavivirus andPestivirus nontranslated regions. Chimeric IRES elements with IIId derived from GB virus B (GBV-B) in the context of the HCV IRES possess translational activity. Mutations within the IIId stem loop that abolish IRES activity also affect the RNA structure in RNase T1-probing studies, demonstrating the importance of correct RNA folding to IRES function.
PLOS ONE | 2012
Shan Wan; Sidney Pestka; Ronald G. Jubin; Yi Lisa Lyu; Yu Chen Tsai; Leroy F. Liu
Low doses of anticancer drugs have been shown to enhance antitumor immune response and increase the efficacy of immunotherapy. The molecular basis for such effects remains elusive, although selective depletion of T regulatory cells has been demonstrated. In the current studies, we demonstrate that topotecan (TPT), a topoisomerase I-targeting drug with a well-defined mechanism of action, stimulates major histocompatibility complex class I (MHC I) expression in breast cancer cells through elevated expression/secretion of interferon-β (IFN-β) and activation of type I IFN signaling. First, we show that TPT treatment elevates the expression of both total and cell-surface MHC I in breast cancer cells. Second, conditioned media from TPT-treated breast cancer ZR-75-1 cells induce elevated expression of cell-surface MHC I in drug-naïve recipient cells, suggesting the involvement of cytokines and/or other secreted molecules. Consistently, TPT-treated cells exhibit elevated expression of multiple cytokines such as IFN-β, TNF-α, IL-6 and IL-8. Third, either knocking down the type I interferon receptor subunit 1 (IFNAR1) or addition of neutralizing antibody against IFN-β results in reduced MHC I expression in TPT-treated cells. Together, these results suggest that TPT induces increased IFN-β autocrine/paracrine signaling through type I IFN receptor, resulting in the elevated MHC I expression in tumor cells. Studies have also demonstrated that other chemotherapeutic agents (e.g. etoposide, cisplatin, paclitaxel and vinblastine) similarly induce increased IFN-β secretion and elevated MHC I expression. In addition, conditioned media from γ-irradiated donor cells are shown to induce IFN-β-dependent MHC I expression in unirradiated recipient cells. In the aggregate, our results suggest that many cancer therapeutics induce elevated tumor antigen presentation through MHC I, which could represent a common mechanism for enhanced antitumor immune response through T cell cytotoxicity during metronomic chemotherapy, as well as increased efficacy of combined chemo- (or radio-)/immuno-therapy.
The Journal of Infectious Diseases | 2000
Ronald G. Jubin; Michael G. Murray; Anita Y.M. Howe; Nancy Butkiewicz; Zhi Hong; Johnson Y.N. Lau
Amantadine, a drug known to inhibit influenza A viral matrix (M2) protein function, was reported to be an effective treatment in some patients with chronic hepatitis C virus (HCV) infection. Sequence comparison shows no homology between M2 and any of the HCV proteins. The effects of amantadine and a related analogue, rimantadine, on viral protease, helicase, ATPase, RNA-dependent RNA polymerase, and HCV internal ribosomal entry site (IRES) translation were tested by established in vitro biochemical assays. No inhibition (>15%) of HCV protease, helicase, ATPase, and polymerase was observed with concentrations up to 400 microgram/mL. IRES-specific inhibition was not observed at clinically relevant concentrations, but both cap and IRES reporter genes were suppressed at higher levels, suggesting nonspecific translation inhibition. In conclusion, amantadine and rimantadine have no direct and specific inhibitory effects against HCV protease, helicase, ATPase, polymerase, and IRES in vitro.
Virology | 2017
Philippa Hillyer; Viraj P. Mane; Aaron Chen; Maria B. dos Santos; Lynnsie M. Schramm; Rachel Shepard; Cindy Luongo; Cyril Le Nouën; Lei Huang; Lihan Yan; Ursula J. Buchholz; Ronald G. Jubin; Peter L. Collins; Ronald L. Rabin
Whether respiratory syncytial virus (RSV) induces severe infantile pulmonary disease may depend on viral strain and expression of types I and III interferons (IFNs). These IFNs impact disease severity by inducing expression of many anti-viral IFN-stimulated genes (ISGs). To investigate the impact of RSV strain on IFN and ISG expression, we stimulated human monocyte-derived DCs (MDDCs) with either RSV A2 or Line 19 and measured expression of types I and III IFNs and ISGs. At 24h, A2 elicited higher ISG expression than Line 19. Both strains induced MDDCs to express genes for IFN-β, IFN-α1, IFN-α8, and IFN-λ1-3, but only A2 induced IFN-α2, -α14 and -α21. We then show that IFN-α8 and IFN-α14 most potently induced MDDCs and bronchial epithelial cells (BECs) to express ISGs. Our findings demonstrate that RSV strain may impact patterns of types I and III IFN expression and the magnitude of the ISG response by DCs and BECs.
Journal of Clinical Oncology | 2016
Ronald G. Jubin; Peter Buontempo; Daniel Byczkowski; Hemant Misra; Abraham Abuchowski
e14085Background: Anti-Neutropenia Factor - RHO (ANF-RHO) is a novel pegylated version of native human recombinant G-CSF protein. ANF-RHO has distinct biophysical and biological properties that pro...
RNA | 2001
Jeffrey S. Kieft; Kaihong Zhou; Ronald G. Jubin; Jennifer A. Doudna
Journal of Molecular Biology | 1999
Jeffrey S. Kieft; Kaihong Zhou; Ronald G. Jubin; Michael G. Murray; Johnson Y.N. Lau; Jennifer A. Doudna
Virology | 1996
Nancy Butkiewicz; Michelle Wendel; Rumin Zhang; Ronald G. Jubin; John Pichardo; Elizabeth B. Smith; Andrea Hart; Richard N. Ingram; James Durkin; Philip W. Mui; Michael G. Murray; Lata Ramanathan; Bimalendu Dasmahapatra
Archive | 1996
Ronald G. Jubin