Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald G. Mink is active.

Publication


Featured researches published by Ronald G. Mink.


Space Science Reviews | 2017

OSIRIS-REx: Sample Return from Asteroid (101955) Bennu

Dante S. Lauretta; S. S. Balram-Knutson; Edward C. Beshore; William V. Boynton; C. Drouet d’Aubigny; D. N. DellaGiustina; H. L. Enos; Dathon R. Golish; Carl W. Hergenrother; Ellen Susanna Howell; C. A. Bennett; E. T. Morton; Michael C. Nolan; Bashar Rizk; H. L. Roper; Arlin E. Bartels; B. J. Bos; Jason P. Dworkin; D. E. Highsmith; D. A. Lorenz; Lucy F. G. Lim; Ronald G. Mink; Michael C. Moreau; Joseph A. Nuth; D. C. Reuter; A. A. Simon; Edward B. Bierhaus; B. H. Bryan; R. Ballouz; Olivier S. Barnouin

In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.


ieee aerospace conference | 2015

The OSIRIS-REx asteroid sample return mission

Edward C. Beshore; Dante S. Lauretta; William V. Boynton; Christopher Shinohara; Brian Sutter; David F. Everett; Jonathan Gal-Edd; Ronald G. Mink; Michael C. Moreau; Jason P. Dworkin

In September of 2016, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith EXplorer) spacecraft will depart for asteroid (101955) Bennu, and when it does, humanity will turn an important corner in the exploration of the Solar System. After arriving at the asteroid in the Fall of 2018, it will undertake a program of observations designed to select a site suitable for retrieving a sample that will be returned to the Earth in 2023. The third mission in NASAs New Frontiers program, OSIRIS-REx will obtain a minimum of 60 g of a primitive asteroids surface, the largest sample of extra-terrestrial material returned to the Earth since the end of the Apollo lunar missions (Figure 1). OSIRIS-REx will also return a separate sample of the fine-grained surface material that is <;1 mm in diameter.


International Symposium on Optical Science and Technology | 2002

Comparison of Stress Relief Procedures for Cryogenic Aluminum Mirrors

Raymond G. Ohl; Michael P. Barthelmy; Said Wahid Zewari; Ronald W. Toland; Joseph C. McMann; David Puckett; John G. Hagopian; Jason E. Hylan; John Eric Mentzell; Ronald G. Mink; Leroy M. Sparr; Matthew A. Greenhouse; John W. MacKenty

The Infrared Multi-Object Spectrograph is a facility instrument for the KPNO Mayall Telescope. IRMOS is a low- to mid-resolution, near-IR (0.8-2.5 um) spectrograph that produces simultaneous spectra of ~100 objects in its 2.8 × 2.0 arcmin field of view. The instrument operating temperature is ~80 K and the design is athermal. The bench and mirrors are machined from Al 6061-T651. In spite of its baseline mechanical stress relief, Al 6061-T651 harbors residual stress, which, unless relieved during fabrication, may distort mirror figure to unacceptable levels at the operating temperature (~80 K). Other cryogenic, astronomy instruments using Al mirrors have employed a variety of heat treatment formulae, with mixed results. We present the results of a test program designed to empirically determine the best stress relief procedure for the IRMOS mirrors. Identical test mirrors are processed with six different stress relief formulae from the literature and institutional heritage. After figuring via diamond turning, the mirrors are tested for figure error at room temperature and at ~80 K for three thermal cycles. The heat treatment procedure for the mirrors that yielded the least and most repeatable change in figure error is applied to the IRMOS mirror blanks. We correlate the results of our optical testing with heat treatment and metallographic data.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2003

Alignment and performance of the Infrared Multi-Object Spectrometer

Joseph A. Connelly; Raymond G. Ohl; J. Eric Mentzell; Timothy J. Madison; Jason E. Hylan; Ronald G. Mink; Timo T. Saha; June L. Tveekrem; Leroy M. Sparr; Victor J. Chambers; Danette L. Fitzgerald; Matthew A. Greenhouse; John W. MacKenty

The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator class instrument for the Kitt Peak National Observatory 4 and 2.1 m telescopes. IRMOS is a near-IR (0.8 - 2.5 μm) spectrometer with low- to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of ~100 objects in its 2.8 - 2.0 arc-min field of view (4 m telescope) using a commercial Micro Electro-Mechanical Systems (MEMS) micro-mirror array (MMA) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the MMA field stop, and the spectrograph images the MMA onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and ambient imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve as a qualitative alignment guide, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides a spectral line at 546.1 nm, a blackbody source provides a line at 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard and instrument level test results validate this prediction. We conclude with an instrument performance prediction for cryogenic operation and first light in late 2003.


Astronomical Telescopes and Instrumentation | 2003

Optical testing of diamond machined, aspheric mirrors for ground-based, near-IR astronomy

John Chambers; Ronald G. Mink; Raymond G. Ohl; Joseph A. Connelly; John Eric Mentzell; Steven M. Arnold; Matthew A. Greenhouse; Robert S. Winsor; John W. MacKenty

The Infrared Multi-Object Spectrometer (IRMOS) is a facility-class instrument for the Kitt Peak National Observatory 4 and 2.l meter telescopes. IRMOS is a near-IR (0.8-2.5 μm) spectrometer and operates at ~80 K. The 6061-T651 aluminum bench and mirrors constitute an athermal design. The instrument produces simultaneous spectra at low- to mid-resolving power (R = λ/Δλ = 300-3000) of ~100 objects in its 2.8×2.0 arcmin field. We describe ambient and cryogenic optical testing of the IRMOS mirrors across a broad range in spatial frequency (figure error, mid-frequency error, and microroughness). The mirrors include three rotationally symmetric, off-axis conic sections, one off-axis biconic, and several flat fold mirrors. The symmetric mirrors include convex and concave prolate and oblate ellipsoids. They range in aperture from 94×86 mm to 286×269 mm and in f-number from 0.9 to 2.4. The biconic mirror is concave and has a 94×76 mm aperture, Rx=377 mm, kx=0.0778, Ry=407 mm, and ky=0.1265 and is decentered by -2 mm in X and 227 mm in Y. All of the mirrors have an aspect ratio of approximately 6:1. The surface error fabrication tolerances are < 10 nm RMS microroughness, best effort for mid-frequency error, and < 63.3 nm RMS figure error. Ambient temperature (~293 K) testing is performed for each of the three surface error regimes, and figure testing is also performed at ~80 K. Operation of the ADE PhaseShift MicroXAM white light interferometer (micro-roughness) and the Bauer Model 200 profilometer (mid-frequency error) is described. Both the sag and conic values of the aspheric mirrors make these tests challenging. Figure testing is performed using a Zygo GPI interferometer, custom computer generated holograms (CGH), and optomechanical alignment fiducials. Cryogenic CGH null testing is discussed in detail. We discuss complications such as the change in prescription with temperature and thermal gradients. Correction for the effect of the dewar window is also covered. We discuss the error budget for the optical test and alignment procedure. Data reduction is accomplished using commercial optical design and data analysis software packages. Results from CGH testing at cryogenic temperatures are encouraging thus far.


Astronomical Telescopes and Instrumentation | 2003

Imaging performance and modeling of the Infrared Multi-Object Spectrometer focal reducer

Joseph A. Connelly; Raymond G. Ohl; Timo T. Saha; Theo Hadjimichael; John Eric Mentzell; Ronald G. Mink; Jason E. Hylan; Leroy M. Sparr; John Chambers; John J Hagopian; Matthew A. Greenhouse; Robert S. Winsor; John W. MacKenty

The Infrared Multi-Object Spectrometer (IRMOS) is a facility instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 μm) spectrometer with low- to mid-resolving power (R = 300 - 3000). The IRMOS spectrometer produces simultaneous spectra of ~100 objects in its 2.8 x 2.0 arcmin field of view using a commercial MEMS multi-mirror array device (MMA) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the MMA field stop, and the spectrograph images the MMA onto the detector. We describe the breadboard subsystem alignment method and imaging performance of the focal reducer. This testing provides verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Interferometric measurements of subsystem wavefront error serve to verify alignment and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing is then performed for the central field point. A mercury-argon pencil lamp provides the spectral line at 546.1 nm, and a CCD camera is the detector. We use the Optical Surface Analysis Code to predict the point-spread function and its effect on instrument slit transmission, and our breadboard test results validate this prediction. Our results show that scattered light from the subsystem and encircled energy is slightly worse than expected. Finally, we perform component level image testing of the MMA, and our results show that scattered light from the MMA is of the same magnitude as that of the focal reducer.


ieee aerospace conference | 2015

OSIRIS-REx, returning the asteroid sample

Thomas Ajluni; David F. Everett; Timothy Linn; Ronald G. Mink; William H. Willcockson; Joshua Wood

This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.


ieee aerospace conference | 2017

Designing to sample the unknown: Lessons from OSIRIS-REx project systems engineering

David F. Everett; Ronald G. Mink; Timothy Linn; Joshua Wood

On September 8, 2016, the third NASA New Frontiers mission launched on an Atlas V 411. The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) will rendezvous with asteroid Bennu in 2018, collect a sample in 2020, and return that sample to Earth in September 2023. The development team has overcome a number of challenges in order to design and build a system that will make contact with an unexplored, airless, low-gravity body. This paper will provide an overview of the mission, then focus in on the system-level challenges and some of the key system-level processes. Some of the lessons here are unique to the type of mission, like discussion of operating at a largely-unknown, low-gravity object. Other lessons, particularly from the build phase, have broad implications. The OSIRIS-REx risk management process was particularly effective in achieving an on-time and under-budget development effort. The systematic requirements management and verification and the system validation also helped identify numerous potential problems. The final assessment of the OSIRIS-REx performance will need to wait until the sample is returned in 2023, but this post-launch assessment will capture some of the key systems-engineering lessons from the development team.


Proceedings of SPIE | 2005

Cryogenic system for interferometry of high-precision optics at 20 K: design and performance

Peter Blake; John Chambers; Ronald G. Mink; Pamela S. Davila; F. David Robinson; Chris Chrzanowski; Badri Shirgur; chip Frohlich

This report describes the facility and experimental methods at the Goddard Space Flight Center Optics Branch for the measurement of the surface figure of cryogenically-cooled spherical mirrors using standard phase-shifting interferometry, with a standard uncertainty below 2nm rms. Two developmental silicon carbide mirrors were tested: both were spheres with radius of curvature of 600 mm, and clear apertures of 150 mm. The mirrors were cooled within a cryostat, and the surface figure error measured through a fused-silica window. The GSFC team developed methods to measure the change in surface figure with temperature (the cryo-change) with a combined standard uncertainty below 1 nm rms. This paper will present the measurement facility, methods, and uncertainty analysis.


Space Science Reviews | 2018

OSIRIS-REx Contamination Control Strategy and Implementation

Jason P. Dworkin; L. A. Adelman; T. M. Ajluni; Alexandre V. Andronikov; J. S. Aponte; Arlin E. Bartels; Edward C. Beshore; Edward B. Bierhaus; J. R. Brucato; B. H. Bryan; Aaron S. Burton; M. P. Callahan; S. L. Castro-Wallace; Benton C. Clark; S. J. Clemett; H. C. Connolly; W. E. Cutlip; S. M. Daly; V. E. Elliott; Jamie E. Elsila; H. L. Enos; David F. Everett; Ian A. Franchi; Daniel P. Glavin; H. V. Graham; J. E. Hendershot; J. W. Harris; S. L. Hill; A. R. Hildebrand; G. O. Jayne

Collaboration


Dive into the Ronald G. Mink's collaboration.

Top Co-Authors

Avatar

John Chambers

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Connelly

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Pamela S. Davila

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Peter Blake

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Raymond G. Ohl

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

F. David Robinson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

John W. MacKenty

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David F. Everett

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. Eric Mentzell

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge