Ronald Garcia
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronald Garcia.
conference on object oriented programming systems languages and applications | 2003
Ronald Garcia; Jaakko Järvi; Andrew Lumsdaine; Jeremy G. Siek; Jeremiah Willcock
Many modern programming languages support basic generic programming, sufficient to implement type-safe polymorphic containers. Some languages have moved beyond this basic support to a broader, more powerful interpretation of generic programming, and their extensions have proven valuable in practice. This paper reports on a comprehensive comparison of generics in six programming languages: C++, Standard ML, Haskell, Eiffel, Java (with its proposed generics extension), and Generic C. By implementing a substantial example in each of these languages, we identify eight language features that support this broader view of generic programming. We find these features are necessary to avoid awkward designs, poor maintainability, unnecessary run-time checks, and painfully verbose code. As languages increasingly support generics, it is important that language designers understand the features necessary to provide powerful generics and that their absence causes serious difficulties for programmers.
Journal of Functional Programming | 2007
Ronald Garcia; Jaakko Järvi; Andrew Lumsdaine; Jeremy G. Siek; Jeremiah Willcock
Many modern programming languages support basic generics, sufficient to implement type-safe polymorphic containers. Some languages have moved beyond this basic support, and in doing so have enabled a broader, more powerful form of generic programming. This paper reports on a comprehensive comparison of facilities for generic programming in eight programming languages: C++, Standard ML, Objective Caml, Haskell, Eiffel, Java, Cn (with its proposed generics extension), and Cecil. By implementing a substantial example in each of these languages, we illustrate how the basic roles of generic programming can be represented in each language. We also identify eight language properties that support this broader view of generic programming: support for multi-type concepts, multiple constraints on type parameters, convenient associated type access, constraints on associated types, retroactive modeling, type aliases, separate compilation of algorithms and data structures, and implicit argument type deduction for generic algorithms. We find that these features are necessary to avoid awkward designs, poor maintainability, and painfully verbose code. As languages increasingly support generics, it is important that language designers understand the features necessary to enable the effective use of generics and that their absence can cause difficulties for programmers.
european symposium on programming | 2009
Jeremy G. Siek; Ronald Garcia; Walid Taha
This paper explores the surprisingly rich design space for the simply typed lambda calculus with casts and a dynamic type. Such a calculus is the target intermediate language of the gradually typed lambda calculus but it is also interesting in its own right. In light of diverse requirements for casts, we develop a modular semantic framework, based on Hengleins Coercion Calculus, that instantiates a number of space-efficient, blame-tracking calculi, varying in what errors they detect and how they assign blame. Several of the resulting calculi extend work from the literature with either blame tracking or space efficiency, and in doing so reveal previously unknown connections. Furthermore, we introduce a new strategy for assigning blame under which casts that respect traditional subtyping are statically guaranteed to never fail. One particularly appealing outcome of this work is a novel cast calculus that is well-suited to gradual typing.
symposium on principles of programming languages | 2016
Ronald Garcia; Alison M. Clark; Éric Tanter
Language researchers and designers have extended a wide variety of type systems to support gradual typing, which enables languages to seamlessly combine dynamic and static checking. These efforts consistently demonstrate that designing a satisfactory gradual counterpart to a static type system is challenging, and this challenge only increases with the sophistication of the type system. Gradual type system designers need more formal tools to help them conceptualize, structure, and evaluate their designs. In this paper, we propose a new formal foundation for gradual typing, drawing on principles from abstract interpretation to give gradual types a semantics in terms of pre-existing static types. Abstracting Gradual Typing (AGT for short) yields a formal account of consistency---one of the cornerstones of the gradual typing approach---that subsumes existing notions of consistency, which were developed through intuition and ad hoc reasoning. Given a syntax-directed static typing judgment, the AGT approach induces a corresponding gradual typing judgment. Then the type safety proof for the underlying static discipline induces a dynamic semantics for gradual programs defined over source-language typing derivations. The AGT approach does not resort to an externally justified cast calculus: instead, run-time checks naturally arise by deducing evidence for consistent judgments during proof reduction. To illustrate the approach, we develop a novel gradually-typed counterpart for a language with record subtyping. Gradual languages designed with the AGT approach satisfy by construction the refined criteria for gradual typing set forth by Siek and colleagues.
ACM Transactions on Programming Languages and Systems | 2014
Ronald Garcia; Éric Tanter; Roger Wolff; Jonathan Aldrich
Typestate reflects how the legal operations on imperative objects can change at runtime as their internal state changes. A typestate checker can statically ensure, for instance, that an object method is only called when the object is in a state for which the operation is well defined. Prior work has shown how modular typestate checking can be achieved thanks to access permissions and state guarantees. However, typestate was not treated as a primitive language concept: typestate checkers are an additional verification layer on top of an existing language. In contrast, a typestate-oriented programming (TSOP) language directly supports expressing typestates. For example, in the Plaid programming language, the typestate of an object directly corresponds to its class, and that class can change dynamically. Plaid objects have not only typestate-dependent interfaces but also typestate-dependent behaviors and runtime representations. This article lays foundations for TSOP by formalizing a nominal object-oriented language with mutable state that integrates typestate change and typestate checking as primitive concepts. We first describe a statically typed language—Featherweight Typestate (FT)—where the types of object references are augmented with access permissions and state guarantees. We describe a novel flow-sensitive permission-based type system for FT. Because static typestate checking is still too rigid for some applications, we then extend this language into a gradually typed language—Gradual Featherweight Typestate (GFT). This language extends the notion of gradual typing to account for typestate: gradual typestate checking seamlessly combines static and dynamic checking by automatically inserting runtime checks into programs. The gradual type system of GFT allows programmers to write dynamically safe code even when the static type checker can only partly verify it.
international conference on functional programming | 2014
Felipe Bañados Schwerter; Ronald Garcia; Éric Tanter
Effect systems have the potential to help software developers, but their practical adoption has been very limited. We conjecture that this limited adoption is due in part to the difficulty of transitioning from a system where effects are implicit and unrestricted to a system with a static effect discipline, which must settle for conservative checking in order to be decidable. To address this hindrance, we develop a theory of gradual effect checking, which makes it possible to incrementally annotate and statically check effects, while still rejecting statically inconsistent programs. We extend the generic type-and-effect framework of Marino and Millstein with a notion of unknown effects, which turns out to be significantly more subtle than unknown types in traditional gradual typing. We appeal to abstract interpretation to develop and validate the concepts of gradual effect checking. We also demonstrate how an effect system formulated in Marino and Millsteins framework can be automatically extended to support gradual checking.
symposium on principles of programming languages | 2015
Ronald Garcia; Matteo Cimini
Gradual typing is a discipline for integrating dynamic checking into a static type system. Since its introduction in functional languages, it has been adapted to a variety of type systems, including object-oriented, security, and substructural. This work studies its application to implicitly typed languages based on type inference. Siek and Vachharajani designed a gradual type inference system and algorithm that infers gradual types but still rejects ill-typed static programs. However, the type system requires local reasoning about type substitutions, an imperative inference algorithm, and a subtle correctness statement. This paper introduces a new approach to gradual type inference, driven by the principle that gradual inference should only produce static types. We present a static implicitly typed language, its gradual counterpart, and a type inference procedure. The gradual system types the same programs as Siek and Vachharajani, but has a modular structure amenable to extension. The language admits let-polymorphism, and its dynamics are defined by translation to the Polymorphic Blame Calculus. The principal types produced by our initial type system mask the distinction between static parametric polymorphism and polymorphism that can be attributed to gradual typing. To expose this difference, we distinguish static type parameters from gradual type parameters and reinterpret gradual type consistency accordingly. The resulting extension enables programs to be interpreted using either the polymorphic or monomorphic Blame Calculi.
european symposium on programming | 2015
Jeremy G. Siek; Michael M. Vitousek; Matteo Cimini; Sam Tobin-Hochstadt; Ronald Garcia
Gradual typing enables both static and dynamic typing in the same program and makes it convenient to migrate code regions between the two typing disciplines. One goal of gradual typing is to provide all the benefits of static typing, such as efficiency, in statically-typed regions. However, this goal is elusive: the standard approach to mutable references imposes run-time overhead in statically-typed regions and alternative approaches are too conservative, either statically or at run-time. In this paper we present a new semantics called monotonic references which imposes none of the run-time overhead of dynamic typing in statically typed regions. With this design, casting a reference may cause a heap cell to become more statically typed but not less. Retaining type safety is challenging with strong updates to the heap. Nevertheless, we have a mechanized proof of type safety. Further, we present blame tracking for monotonic references and prove a blame theorem.
international conference on functional programming | 2013
Ronald Garcia
Coercions and threesomes both enable a language to combine static and dynamic types while avoiding cast-based space leaks. Coercion calculi elegantly specify space-efficient cast behavior, even when augmented with blame tracking, but implementing their semantics directly is difficult. Threesomes, on the other hand, have a straightforward recursive implementation, but endowing them with blame tracking is challenging. In this paper, we show that you can use that elegant spec to produce that straightforward implementation: we use the coercion calculus to derive threesomes with blame. In particular, we construct novel threesome calculi for blame tracking strategies that detect errors earlier, catch more errors, and reflect an intuitive conception of safe and unsafe casts based on traditional subtyping.
conference on object-oriented programming systems, languages, and applications | 2014
Esteban Allende; Johan Fabry; Ronald Garcia; Éric Tanter
Gradual typing combines static and dynamic typing flexibly and safely in a single programming language. To do so, gradually typed languages implicitly insert casts where needed, to ensure at runtime that typing assumptions are not violated by untyped code. However, the implicit nature of cast insertion, especially on higher-order values, can jeopardize reliability and efficiency: higher-order casts can fail at any time, and are costly to execute. We propose Confined Gradual Typing, which extends gradual typing with two new type qualifiers that let programmers control the flow of values between the typed and the untyped worlds, and thereby trade some flexibility for more reliability and performance. We formally develop two variants of Confined Gradual Typing that capture different flexibility/guarantee tradeoffs. We report on the implementation of Confined Gradual Typing in Gradualtalk, a gradually-typed Smalltalk, which confirms the performance advantage of avoiding unwanted higher-order casts and the low overhead of the approach.