Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald Gieschke is active.

Publication


Featured researches published by Ronald Gieschke.


Drug Safety | 2008

Assessment of neuropsychiatric adverse events in influenza patients treated with oseltamivir: a comprehensive review.

Stephen Toovey; Craig R. Rayner; Eric Prinssen; Tom Chu; Barbara Donner; Bharat Thakrar; Regina Dutkowski; Gerhard Hoffmann; Alexander Breidenbach; Lothar Lindemann; Ellen Carey; Lauren Boak; Ronald Gieschke; Susan Sacks; Jonathan Solsky; Ian Small; David Reddy

After reports from Japan of neuropsychiatric adverse events (NPAEs) in children taking oseltamivir phosphate (hereafter referred to as oseltamivir [Tamiflu®; F. Hoffmann-La Roche Ltd, Basel, Switzerland]) during and after the 2004–5 influenza season, Roche explored possible reasons for the increase in reporting rate and presented regular updates to the US FDA and other regulatory authorities. This review summarizes the results of a comprehensive assessment of the company’s own preclinical and clinical studies, post-marketing spontaneous adverse event reporting, epidemiological investigations utilizing health claims and medical records databases and an extensive review of the literature, with the aim of answering the following questions: (i) what the types and rates of neuropsychiatric abnormalities reported in patients with influenza are, and whether these differ in patients who have received oseltamivir compared with those who have not; (ii) what levels of oseltamivir and its active metabolite, oseltamivir carboxylate are achieved in the CNS; (iii) whether oseltamivir and oseltamivircarboxylate have pharmacological activity in the CNS; and (iv) whether there are genetic differences between Japanese and Caucasian patients that result in different levels of oseltamivir and/or oseltamivir carboxylate in the CNS, differences in their metabolism or differences in their pharmacological activity in the CNS.In total, 3051 spontaneous reports of NPAEs were received by Roche, involving 2466 patients who received oseltamivir between 1999 and 15 September 2007; 2772 (90.9%) events originated from Japan, 190 (6.2%) from the US and 89 (2.9%) from other countries. During this period, oseltamivir was prescribed to around 48 million people worldwide. Crude NPAE reporting rates (per 1 000 000 prescriptions) in children (aged ≤16 years) and adults, respectively, were 99 and 28 events in Japan and 19 and 8 in the US. NPAEs were more commonly reported in children (2218 events in 1808 children aged >16 years vs 833 in 658 adults) and generally occurred within 48 hours of the onset of influenza illness and initiation of treatment. After categorizing the reported events according to International Classification of Diseases (9th edition) codes, abnormal behaviour (1160 events, 38.0%) and delusions/perceptual disturbances (661 events, 21.7%) were the largest categories of events, and delirium or delirium-like events (as defined by the American Psychiatric Association) were very common in most categories.No difference in NPAE reporting rates between oseltamivir and placebo was found in phase III treatment studies (0.5% vs 0.6%). Analyses of US healthcare claims databases showed the risk of NPAEs in oseltamivir-treated patients (n =159 386) was no higher than those not receiving antivirals (n = 159 386). Analysis of medical records in the UK General Practice Research Database showed that the adjusted relative risk of NPAEs in influenza patients was significantly higher (1.75-fold) than in the general population. Based on literature reports, NPAEs in Japanese and Taiwanese children with influenza have occurred before the initiation of oseltamivir treatment; events were also similar to those occurring after the initiation of oseltamivir therapy.No clinically relevant differences in plasma pharmacokinetics of oseltamivir and its active metabolite oseltamivir carboxylate were noted between Japanese and Caucasian adults or children. Penetration into the CNS of both oseltamivir and oseltamivir carboxylate was low in Japanese and Caucasian adults (cerebrospinal fluid/plasma maximum concentration and area under the plasma concentration-time curve ratios of approximately 0.03), and the capacity for converting oseltamivir to oseltamivir carboxylate in rat and human brains was low. In animal autoradiography and pharmacokinetic studies, brain: plasma radioactivity ratios were generally 20% or lower. Animal studies showed no specific CNS/behavioural effects after administration of doses corresponding to ≥100 times the clinical dose. Oseltamivir or oseltamivir carboxylate did not interact with human neuraminidases or with 155 known molecular targets in radioligand binding and functional assays. A review of the information published to date on functional variations of genes relevant to oseltamivir pharmacokinetics and pharmacodynamics and simulated gene knock-out scenarios did not identify any plausible genetic explanations for the observed NPAEs.The available data do not suggest that the incidence of NPAEs in influenza patients receiving oseltamivir is higher than in those who do not, and no mechanism by which oseltamivir or oseltamivir carboxylate could cause or worsen such events could be identified.


Clinical Pharmacokinectics | 1999

Relationships Between Exposure to Saquinavir Monotherapy and Antiviral Response in HIV-Positive Patients

Ronald Gieschke; Bärbel Fotteler; Neil Buss; Jean-Louis Steimer

ObjectiveThe aim of this study was to confirm the most appropriate dosage of a new soft gelatin capsule (SGC) formulation of the HIV protease inhibitor saquinavir by investigating the relationships between systemic (plasma) exposure to saquinavir and plasma HIV RNA and CD4+ cell counts using empirical mathematical modelling.Design and settingA randomised, non-blind, multicentre, dose-ranging 8-week study of monotherapy with 400, 800 or 1200mg of saquinavir-SGC or 600mg of the hard gelatin capsule (HGC) formulation, both administered 3 times daily, was carried out in protease inhibitor-naive, HIV-positive adults. Two surrogate markers of response, plasma HIV RNA level and CD4+ cell count, were fitted to 2 measures of systemic drug exposure, the area under the plasma concentration-time curve (AUC) and trough plasma concentration (Cmin), using 6 exposure-response models of progressively increasing complexity. Akaike and Schwarz model selection criteria were applied to determine the most effective pharmacokinetic-pharmacodynamic relationship.ResultsA total of 88 patients were randomised; pharmacokinetic and pharmacodynamic data were available for 84 patients. In terms of plasma HIV RNA, pharmacokinetic-pharmacodynamic relationships were best described by a 2-parameter maximum effect (Emax) model, which predicted a typical maximum reduction in viral load of 1.94 log10 copies/ml [coefficient of variation (CV) 12%], with a half-maximal antiviral response occurring at a Cmin of 50 μ g/L (CV 40%). Saquinavir-SGC 1200mg administered 3 times daily produced a median AUC to 24 hours (AUC24) of approximately 20 000 μg/L · h, corresponding to 85% of the maximum achievable antiviral effect as defined by the model. None of the models yielded a satisfactory fit for CD4+ cell count.ConclusionEmpirical mathematical modelling confirmed that, when administered 3 times daily, the optimum dose of saquinavir-SGC is 1200mg, corresponding to 3600 mg/day.


Journal of Pharmacokinetics and Pharmacodynamics | 2007

Modelling Response Time Profiles in the Absence of Drug Concentrations: Definition and Performance Evaluation of the K–PD Model

Philippe Jacqmin; E. Snoeck; E.A. van Schaick; Ronald Gieschke; P. Pillai; Jean-Louis Steimer; Pascal Girard

The plasma concentration–time profile of a drug is essential to explain the relationship between the administered dose and the kinetics of drug action. However, in some cases such as in pre-clinical pharmacology or phase-III clinical studies where it is not always possible to collect all the required PK information, this relationship can be difficult to establish. In these circumstances several authors have proposed simple models that can analyse and simulate the kinetics of the drug action in the absence of PK data. The present work further develops and evaluates the performance of such an approach. A virtual compartment representing the biophase in which the concentration is in equilibrium with the observed effect is used to extract the (pharmaco)kinetic component from the pharmacodynamic data alone. Parameters of this model are the elimination rate constant from the virtual compartment (KDE), which describes the equilibrium between the rate of dose administration and the observed effect, and the second parameter, named EDK50 which is the apparent in vivo potency of the drug at steady state, analogous to the product of EC50, the pharmacodynamic potency, and clearance, the PK “potency” at steady state. Using population simulation and subsequent (blinded) analysis to evaluate this approach, it is demonstrated that the proposed model usually performs well and can be used for predictive simulations in drug development. However, there are several important limitations to this approach. For example, the investigated doses should extend from those producing responses well below the EC50 to those producing ones close to the maximum response, optimally reach steady state response and followed until the response returns to baseline. It is shown that large inter-individual variability on PK–PD parameters will produce biases as well as large imprecision on parameter estimates. It is also clear that extrapolations to dosage routes or schedules other than those used to estimate the parameters should be undertaken with great caution (e.g., in case of non-linearity or complex drug distribution). Consequently, it is advised to apply this approach only when the underlying structural PD and PK are well understood. In any case, K–PD model should definitively not be substituted for the gold standard PK–PD model when correct full model can and should be identified.


Clinical Pharmacology & Therapeutics | 1995

Integrated pharmacokinetics and pharmacodynamics of the novel catechol‐O‐methyltransferase inhibitor tolcapone during first administration to humans

J. Dingemanse; Karin Jorga; Monique Schmitt; Ronald Gieschke; Bärbel Fotteler; Gerhard Zürcher; MoséDa Prada; Peter van Brummelen

To assess the tolerability, pharmacokinetics and pharmacodynamics of single oral doses of the novel catechol‐O‐methyltransferase (COMT) inhibitor tolcapone in healthy volunteers.


The Journal of Clinical Pharmacology | 2007

An Integrated Model for Glucose and Insulin Regulation in Healthy Volunteers and Type 2 Diabetic Patients Following Intravenous Glucose Provocations

Hanna E. Silber; Petra M. Jauslin; Nicolas Frey; Ronald Gieschke; Ulrika S. H. Simonsson; Mats O. Karlsson

An integrated model for the regulation of glucose and insulin concentrations following intravenous glucose provocations in healthy volunteers and type 2 diabetic patients was developed. Data from 72 individuals were included. Total glucose, labeled glucose, and insulin concentrations were determined. Simultaneous analysis of all data by nonlinear mixed effect modeling was performed in NONMEM. Integrated models for glucose, labeled glucose, and insulin were developed. Control mechanisms for regulation of glucose production, insulin secretion, and glucose uptake were incorporated. Physiologically relevant differences between healthy volunteers and patients were identified in the regulation of glucose production, elimination rate of glucose, and secretion of insulin. The model was able to describe the insulin and glucose profiles well and also showed a good ability to simulate data. The features of the present model are likely to be of interest for analysis of data collected in antidiabetic drug development and for optimization of study design.


The Journal of Clinical Pharmacology | 2008

Population Pharmacokinetics of Oseltamivir When Coadministered With Probenecid

Craig R. Rayner; Pascal Chanu; Ronald Gieschke; Lauren Boak; E. Niclas Jonsson

Oseltamivir is a potent, selective, oral neuraminidase inhibitor for the treatment and prophylaxis of influenza. Plasma concentrations of the active metabolite, oseltamivir carboxylate, are increased in the presence of probenecid, suggesting that the combination could allow for the use of reduced doses of oseltamivir. To investigate this proposal, we developed a population pharmacokinetic model and simulated the pharmacokinetics of candidate combination regimens of oral oseltamivir (45 mg and 30 mg twice a day) plus oral probenecid (500 mg/6 hourly). Probenecid plus oseltamivir 45 mg achieved all the pharmacokinetic parameters expected of oseltamivir alone, but combination with oseltamivir 30 mg and dose interval extension approaches did not. An oseltamivir—probenecid combination may compromise tolerability and enhance the potential for drug interactions. In addition, increased dosing requirements may affect compliance and attainment of optimal oseltamivir exposure, potentially facilitating the emergence of viral strains with reduced susceptibility to oseltamivir. These factors, set alongside increased capacity for oseltamivir production, should be carefully considered before an oseltamivir—probenecid combination is used.


Psychopharmacology | 1993

Pharmacodynamic interactions of diazepam and intravenous alcohol at pseudo steady state.

A. L. van Steveninck; Ronald Gieschke; H. C. Schoemaker; M. S. M. Pieters; J.M. Kroon; Douwe D. Breimer; A. F. Cohen

Pharmacodynamic interactions of low doses of diazepam and alcohol were investigated in a double blind, randomised, 2×2 factorial, cross-over study in eight healthy volunteers. Alcohol or glucose 5% were administered intravenously at rates calculated to maintain breath alcohol levels of 0.5 g/l from 1.5 to 5.5 h after starting the alcohol infusion. Diazepam 5 mg or placebo were administered orally at 1.5 h. Evaluation of pharmacodynamic interactions was performed for the average results of tests performed at 2, 3.5 and 5 h. Plasma concentrations of (desmethyl-) diazepam and breath alcohol levels were measured for pharmacokinetic analysis. Breath alcohol reached pseudo steady state levels of 0.38 g/l (range: 0.24–0.57) after alcohol alone and 0.37 g/l (range: 0.27–0.52) in combination with diazepam. Alcohol effects were demonstrated for latency of saccadic eye movements, smooth pursuit eye movements and subjective drug effects. Diazepam impaired smooth pursuit and saccadic eye movements, adaptive tracking, digit symbol substitution and body sway. The effects of combined alcohol and diazepam were mostly additive without significant synergistic interactions. However, in two subjects large supra-additive effects occurred at 3.5 h following alcohol + diazepam, which were not explained by increased drug levels. The design and methods used in this study proved advantageous in evaluating low dose pharmacodynamic interactions. Despite the absence of significant synergistic interactions, unanticipated impairment of performance may occur in susceptible individuals when taking combined low doses of alcohol and diazepam.


Investigational New Drugs | 2003

Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: The capecitabine experience

Karen Smith Blesch; Ronald Gieschke; Yuko Tsukamoto; Bruno Reigner; Hans Ulrich Burger; Jean-Louis Steimer

Preclinical studies, along with Phase I, II, and III clinical trials demonstrate the pharmacokinetics, pharmacodynamics, safety and efficacy of a new drug under well controlled circumstances in relatively homogeneous populations. However, these types of studies generally do not answer important questions about variability in specific factors that predict pharmacokinetic and pharmacodynamic (PKPD) activity, in turn affecting safety and efficacy. Semi-physiological and clinical PKPD modeling and simulation offer the possibility of utilizing data obtained in the laboratory and the clinic to make accurate characterizations and predictions of PKPD activity in the target population, based on variability in predictive factors. Capecitabine is an orally administered pro-drug of 5-fluorouracil (5-FU), designed to exploit tissue-specific differences in metabolic enzyme activities in order to enhance efficacy and safety. It undergoes extensive metabolism in multiple physiologic compartments, and presents particular challenges for predicting pharmacokinetic and pharmacodynamic activity in humans. Clinical and physiologically based pharmacokinetic (PBPK) and pharmacodynamic models were developed to characterize the activity of capecitabine and its metabolites, and the clinical consequences under varying physiological conditions such as creatinine clearance or activity of key metabolic enzymes. The results of the modeling investigations were consistent with capecitabines rational design as a triple pro-drug of 5-FU. This paper reviews and discusses the PKPD and PBPK modeling approaches used in capecitabine development to provide a more thorough understanding of what the key predictors of its PBPK activity are, and how variability in these predictors may affect its PKPD, and ultimately, clinical outcomes.


Journal of Theoretical Biology | 2011

Neuraminidase inhibitors for treatment of human and avian strain influenza: A comparative modeling study.

Hana M. Dobrovolny; Ronald Gieschke; Brian E. Davies; Nelson L. Jumbe; Catherine A. A. Beauchemin

Treatment of seasonal influenza viral infections using antivirals such as neuraminidase inhibitors (NAIs) has been proven effective if administered within 48h post-infection. However, there is growing evidence that antiviral treatment of infections with avian-derived strains even as late as 6 days post-infection (dpi) can significantly reduce infection severity and duration. Using a mathematical model of in-host influenza viral infections which can capture the kinetics of both a short-lived, typical, seasonal infection and a severe infection exhibiting sustained viral titer, we explore differences in the effects of NAI treatment on both types of influenza viral infections. Comparison of our models behavior against experimental data from patients naturally infected with avian strains yields estimates for the times at which patients were infected that are consistent with those reported by the patients, and estimates of drug efficacies that are lower for patients who died than for those who recovered. In addition, our model suggests that the sustained, high, viral titers often seen in more severe influenza virus infections are the reason why antiviral treatment delayed by as much as 6 dpi will still lead to reduced viral titers and shortened illness. We conclude that NAIs may be an effective and beneficial treatment strategy against more severe strains of influenza virus characterized by high, sustained, viral titers. We believe that our mathematical model will be an effective tool in guiding treatment of severe influenza viral infections with antivirals.


PLOS ONE | 2010

Exploring Cell Tropism as a Possible Contributor to Influenza Infection Severity

Hana M. Dobrovolny; Marc J. Baron; Ronald Gieschke; Brian E. Davies; Nelson L. Jumbe; Catherine A. A. Beauchemin

Several mechanisms have been proposed to account for the marked increase in severity of human infections with avian compared to human influenza strains, including increased cytokine expression, poor immune response, and differences in target cell receptor affinity. Here, the potential effect of target cell tropism on disease severity is studied using a mathematical model for in-host influenza viral infection in a cell population consisting of two different cell types. The two cell types differ only in their susceptibility to infection and rate of virus production. We show the existence of a parameter regime which is characterized by high viral loads sustained long after the onset of infection. This finding suggests that differences in cell tropism between influenza strains could be sufficient to cause significant differences in viral titer profiles, similar to those observed in infections with certain strains of influenza A virus. The two target cell mathematical model offers good agreement with experimental data from severe influenza infections, as does the usual, single target cell model albeit with biologically unrealistic parameters. Both models predict that while neuraminidase inhibitors and adamantanes are only effective when administered early to treat an uncomplicated seasonal infection, they can be effective against more severe influenza infections even when administered late.

Collaboration


Dive into the Ronald Gieschke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge