Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald J. Baskin is active.

Publication


Featured researches published by Ronald J. Baskin.


Nature | 2001

Processive translocation and DNA unwinding by individual RecBCD enzyme molecules

Piero R. Bianco; Laurence R. Brewer; Michele Corzett; Rod Balhorn; Yin Yeh; Stephen C. Kowalczykowski; Ronald J. Baskin

RecBCD enzyme is a processive DNA helicase and nuclease that participates in the repair of chromosomal DNA through homologous recombination. We have visualized directly the movement of individual RecBCD enzymes on single molecules of double-stranded DNA (dsDNA). Detection involves the optical trapping of solitary, fluorescently tagged dsDNA molecules that are attached to polystyrene beads, and their visualization by fluorescence microscopy. Both helicase translocation and DNA unwinding are monitored by the displacement of fluorescent dye from the DNA by the enzyme. Here we show that unwinding is both continuous and processive, occurring at a maximum rate of 972 ± 172 base pairs per second (0.30 µm s-1), with as many as 42,300 base pairs of dsDNA unwound by a single RecBCD enzyme molecule. The mean behaviour of the individual RecBCD enzyme molecules corresponds to that observed in bulk solution.


Nature | 2006

Direct observation of individual RecA filaments assembling on single DNA molecules

Roberto Galletto; Ichiro Amitani; Ronald J. Baskin; Stephen C. Kowalczykowski

Escherichia coli RecA is essential for the repair of DNA double-strand breaks by homologous recombination. Repair requires the formation of a RecA nucleoprotein filament. Previous studies have indicated a mechanism of filament assembly whereby slow nucleation of RecA protein on DNA is followed by rapid growth. However, many aspects of this process remain unclear, including the rates of nucleation and growth and the involvement of ATP hydrolysis, largely because visualization at the single-filament level is lacking. Here we report the direct observation of filament assembly on individual double-stranded DNA molecules using fluorescently modified RecA. The nucleoprotein filaments saturate the DNA and extend it ∼1.6-fold. At early time points, discrete RecA clusters are seen, permitting analysis of single-filament growth from individual nuclei. Formation of nascent RecA filaments is independent of ATP hydrolysis but is dependent on the type of nucleotide cofactor and the RecA concentration, suggesting that nucleation involves binding of ∼4–5 ATP–RecA monomers to DNA. Individual RecA filaments grow at rates of 3–10 nm s-1. Growth is bidirectional and, in contrast to nucleation, independent of nucleotide cofactor, suggesting addition of ∼2–7 monomers s-1. These results are in accord with extensive genetic and biochemical studies, and indicate that assembly in vivo is controlled at the nucleation step. We anticipate that our approach and conclusions can be extended to the related eukaryotic counterpart, Rad51 (see ref.), and to regulation by assembly mediators.


Cell | 2009

The BRC Repeats of BRCA2 Modulate the DNA Binding Selectivity of RAD51

Aura Carreira; Jovencio Hilario; Ichiro Amitani; Ronald J. Baskin; Mahmud K.K. Shivji; Ashok R. Venkitaraman; Stephen C. Kowalczykowski

The breast cancer susceptibility protein, BRCA2, is essential for recombinational DNA repair. BRCA2 delivers RAD51 to double-stranded DNA (dsDNA) breaks through interaction with eight conserved, approximately 35 amino acid motifs, the BRC repeats. Here we show that the solitary BRC4 promotes assembly of RAD51 onto single-stranded DNA (ssDNA), but not dsDNA, to stimulate DNA strand exchange. BRC4 acts by blocking ATP hydrolysis and thereby maintaining the active ATP-bound form of the RAD51-ssDNA filament. Single-molecule visualization shows that BRC4 does not disassemble RAD51-dsDNA filaments but rather blocks nucleation of RAD51 onto dsDNA. Furthermore, this behavior is manifested by a domain of BRCA2 comprising all eight BRC repeats. These results establish that the BRC repeats modulate RAD51-DNA interaction in two opposing but functionally reinforcing ways: targeting active RAD51 to ssDNA and prohibiting RAD51 nucleation onto dsDNA. Thus, BRCA2 recruits RAD51 to DNA breaks and, we propose, the BRC repeats regulate DNA-binding selectivity.


Biophysical Journal | 1984

Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter.

Richard L. Lieber; Yin Yeh; Ronald J. Baskin

An experimental and theoretical analysis is presented involving the effect of variation in fiber and beam diameter upon the determination of average sarcomere length in isolated single muscle fibers using laser light diffraction. The muscle diffraction phenomenon is simplified by first considering diffraction order position and intensity to be the result of grating and Bragg diffraction. It is the product of the intensity profiles, which results from these types of diffraction, that produces the diffracted order. These simplifying assumptions are then extended to the case of the real muscle. Based on these considerations and the theory that we recently presented, conditions are set forth under which grating information (i.e., sarcomere length) can be maximally expressed to yield accurate average sarcomere length values.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules

Jovencio Hilario; Ichiro Amitani; Ronald J. Baskin; Stephen C. Kowalczykowski

Rad51 protein (Rad51) is central to recombinational repair of double-strand DNA breaks. It polymerizes onto DNA and promotes strand exchange between homologous chromosomes. We visualized the real-time assembly and disassembly of human Rad51 nucleoprotein filaments on double-stranded DNA by single-molecule fluorescence microscopy. Rad51 assembly extends the DNA by ≈65%. Nucleoprotein filament formation occurs via rapid nucleation followed by growth from these nuclei. Growth does not continue indefinitely, however, and nucleoprotein filaments terminate when ≈2 μm in length. The dependence of nascent filament formation on Rad51 concentration suggests that 2–3 Rad51 monomers are involved in nucleation. Rad51 nucleoprotein filaments are stable and remain extended when ATP hydrolysis is prevented; however, when permitted, filaments decrease in length as a result of conversion to ADP-bound nucleoprotein complexes and partial protein dissociation. Dissociation of Rad51 from dsDNA is slow and incomplete, thereby rationalizing the need for other proteins that facilitate disassembly.


Cell | 2007

RecBCD Enzyme Switches Lead Motor Subunits in Response to χ Recognition

Maria Spies; Ichiro Amitani; Ronald J. Baskin; Stephen C. Kowalczykowski

RecBCD is a DNA helicase comprising two motor subunits, RecB and RecD. Recognition of the recombination hotspot, chi, causes RecBCD to pause and reduce translocation speed. To understand this control of translocation, we used single-molecule visualization to compare RecBCD to the RecBCD(K177Q) mutant with a defective RecD motor. RecBCD(K177Q) paused at chi but did not change its translocation velocity. RecBCD(K177Q) translocated at the same rate as the wild-type post-chi enzyme, implicating RecB as the lead motor after chi. P1 nuclease treatment eliminated the wild-type enzymes velocity changes, revealing a chi-containing ssDNA loop preceding chi recognition and showing that RecD is the faster motor before chi. We conclude that before chi, RecD is the lead motor but after chi, the slower RecB motor leads, implying a switch in motors at chi. We suggest that degradation of foreign DNA needs fast translocation, whereas DNA repair uses slower translocation to coordinate RecA loading onto ssDNA.


Biophysical Journal | 1980

Theory of light diffraction by single skeletal muscle fibers

Yin Yeh; Ronald J. Baskin; Richard L. Lieber; K.P. Roos

A theoretical discussion is presented describing the diffraction of laser light by a single fiber of striated muscle. The complete three-dimensional geometry of the fiber has been taken into consideration. The basic repeated unit is taken as the sarcomere of a single myofibril, including its cylindrical geometry. The single fiber is considered as the sum of myofibrils up to the fiber dimensions. When proper phasing is taken into account, three cases of interest are analyzed. (a) When the adjacent myofibrils are totally aligned with respect to their index of refraction regions (e.g., A and I bands), then the diffraction pattern reflects that of a larger striated cylinder with the dimensions of the fiber. (b) When a particular skew plane develops for the myofibril elements, additional Bragg reflection occurs at certain specific sarcomere lengths, and intensity asymmetry amongst the diffracted orders occurs. (c) When the myofibril phasing changes in a random fashion, while all sarcomeres remain at the same length, then intensity decrease is directly related to the phase deviation from a reference phase point. This condition may well describe a fiber undergoing active isometric contraction.


Biophysical Journal | 1976

A light-scattering characterization of membrane vesicles

J.C. Selser; Yin Yeh; Ronald J. Baskin

A technique has been developed in this paper which enables quasi-elastic laser light scattering to be used to accurately and quantitatively measure the average vesicle diffusion coefficient and the relative dispersion in the diffusion coefficient about this average for dilute polydisperse vesicle suspensions. This technique relies on a theoretical analysis of a modified form of the Z-averaged diffusion coefficient. This modified Z-averaged diffusion coefficient explicitly incorporates vesicle size, structure, and polydispersity in a description of the scattered light autocorrelation spectrum. Light-scattering experiments were performed on a dilute, lobster sarcoplasmic reticulum vesicle suspension and the measured average diffusion coefficient and the diffusion coefficient relative dispersion about this average were determined with accuracies of 2 and 10%, respectively. A comparison of vesicle size inferred from light-scattering results was made with size results from electron microscopic analysis of the same sample.


Biophysical Journal | 2004

Mechanism of DNA Compaction by Yeast Mitochondrial Protein Abf2p

Raymond W. Friddle; Jennifer E. Klare; Shelley S. Martin; Michelle Corzett; Rod Balhorn; Enoch P. Baldwin; Ronald J. Baskin; Aleksandr Noy

We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At a high concentration of Abf2p DNA collapses into a tight nucleoprotein complex. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of Abf2p. We also derived a polymer statistical mechanics model that provides a quantitative description of compaction observed in our experiments. This model shows that sharp bends in the DNA backbone are often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for Abf2p. These studies indicate that Abf2p compacts DNA through a simple mechanism that involves bending of the DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance and organization.


Nature | 2013

DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate

Bian Liu; Ronald J. Baskin; Stephen C. Kowalczykowski

Single-molecule studies can overcome the complications of asynchrony and ensemble-averaging in bulk-phase measurements, provide mechanistic insights into molecular activities, and reveal interesting variations between individual molecules. The application of these techniques to the RecBCD helicase of Escherichia coli has resolved some long-standing discrepancies, and has provided otherwise unattainable mechanistic insights into its enzymatic behaviour. Enigmatically, the DNA unwinding rates of individual enzyme molecules are seen to vary considerably, but the origin of this heterogeneity remains unknown. Here we investigate the physical basis for this behaviour. Although any individual RecBCD molecule unwound DNA at a constant rate for an average of approximately 30,000 steps, we discover that transiently halting a single enzyme–DNA complex by depleting Mg2+-ATP could change the subsequent rates of DNA unwinding by that enzyme after reintroduction to ligand. The proportion of molecules that changed rate increased exponentially with the duration of the interruption, with a half-life of approximately 1 second, suggesting that a conformational change occurred during the time that the molecule was arrested. The velocity after pausing an individual molecule was any velocity found in the starting distribution of the ensemble. We suggest that substrate binding stabilizes the enzyme in one of many equilibrium conformational sub-states that determine the rate-limiting translocation behaviour of each RecBCD molecule. Each stabilized sub-state can persist for the duration (approximately 1 minute) of processive unwinding of a DNA molecule, comprising tens of thousands of catalytic steps, each of which is much faster than the time needed for the conformational change required to alter kinetic behaviour. This ligand-dependent stabilization of rate-defining conformational sub-states results in seemingly static molecule-to-molecule variation in RecBCD helicase activity, but in fact reflects one microstate from the equilibrium ensemble that a single molecule manifests during an individual processive translocation event.

Collaboration


Dive into the Ronald J. Baskin's collaboration.

Top Co-Authors

Avatar

Yin Yeh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ichiro Amitani

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Burton

University of California

View shared research outputs
Top Co-Authors

Avatar

K.P. Roos

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.S. Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Paul Paolini

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge