Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald J. Trent is active.

Publication


Featured researches published by Ronald J. Trent.


Experimental Neurology | 1998

Regional specificity of brain atrophy in Huntington's disease

Glenda M. Halliday; D.A. McRitchie; Virginia Macdonald; Kay L. Double; Ronald J. Trent; Elizabeth McCusker

The present study analyzes the relationship between cortical and subcortical brain volumes in patients with Huntingtons disease. The brains of seven patients with a clinical diagnosis and positive family history of Huntingtons disease and 12 controls were collected at autopsy with consent from relatives. Detailed clinical assessments were available for all study subjects with genotype confirmation for patients with Huntingtons disease. Volume analysis of the brain on serial 3-mm coronal slices was performed as previously described. All patients with Huntingtons disease exhibited significant brain atrophy resulting from volume reductions in both cortical and subcortical grey matter. Atrophy of the cortex was relatively uniform, although the medial temporal lobe structures were spared. The caudate nucleus and putamen were strikingly reduced in all cases and this atrophy correlated with the severity of cortical atrophy, suggesting an associated disease process. The rate of cortical but not subcortical atrophy correlated with CAG repeat numbers. Loss of frontal white matter correlated with both cortical and striatal atrophy. Age of onset of chorea correlated with the amount of subcortical atrophy, while duration of chorea correlated negatively with atrophy of the white matter. These results suggest a more widespread and global disease process in patients with Huntingtons disease.


Neurology | 2012

CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Michael R. Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S. Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


Atherosclerosis Supplements | 2011

Familial hypercholesterolaemia: A model of care for Australasia

Gerald F. Watts; David R. Sullivan; Nicola Poplawski; Frank M. van Bockxmeer; Ian Hamilton-Craig; Peter M. Clifton; Richard O’Brien; Warrick Bishop; Peter M. George; Phillip J. Barter; Timothy R. Bates; John R. Burnett; John Coakley; Patricia M. Davidson; Jon Emery; Andrew J. Martin; Waleed Farid; Lucinda Freeman; Elizabeth Geelhoed; A. Juniper; Alexa Kidd; Karam Kostner; Ines Krass; Michael Livingston; Suzy Maxwell; Peter O’Leary; Amal Owaimrin; Trevor G. Redgrave; Nicola Reid; L. Southwell

Familial hypercholesterolaemia (FH) is a dominantly inherited disorder present from birth that causes marked elevation in plasma cholesterol and premature coronary heart disease. There are at least 45,000 people with FH in Australia and New Zealand, but the vast majority remains undetected and those diagnosed with the condition are inadequately treated. To bridge this major gap in coronary prevention the FH Australasia Network (Australian Atherosclerosis Society) has developed a consensus model of care (MoC) for FH. The MoC is based on clinical experience, expert opinion, published evidence and consultations with a wide spectrum of stakeholders, and has been developed for use primarily by specialist centres intending starting a clinical service for FH. This MoC aims to provide a standardised, high-quality and cost-effective system of care that is likely to have the highest impact on patient outcomes. The MoC for FH is presented as a series of recommendations and algorithms focusing on the standards required for the detection, diagnosis, assessment and management of FH in adults and children. The process involved in cascade screening and risk notification, the backbone for detecting new cases of FH, is detailed. Guidance on treatment is based on risk stratifying patients, management of non-cholesterol risk factors, safe and effective use of statins, and a rational approach to follow-up of patients. Clinical and laboratory recommendations are given for genetic testing. An integrative system for providing best clinical care is described. This MoC for FH is not prescriptive and needs to be complemented by good clinical judgment and adjusted for local needs and resources. After initial implementation, the MoC will require critical evaluation, development and appropriate modification.


Archive | 2012

COHORT study oft the HSG. CAG repeat expansion in Huntington disease determines age at onset in al fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie-Helene Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


American Journal of Human Genetics | 2003

A Genome Scan for Modifiers of Age at Onset in Huntington Disease: The HD MAPS Study

Jian Liang Li; Michael R. Hayden; Elisabeth W. Almqvist; Ryan R. Brinkman; Alexandra Durr; Catherine Dodé; Patrick J. Morrison; Oksana Suchowersky; Christopher A. Ross; Russell L. Margolis; Adam Rosenblatt; Estrella Gomez-Tortosa; David Mayo Cabrero; Andrea Novelletto; Marina Frontali; Martha Nance; Ronald J. Trent; Elizabeth McCusker; Randi Jones; Jane S. Paulsen; Madeline Harrison; Andrea Zanko; Ruth K. Abramson; Ana L. Russ; Beth Knowlton; Luc Djoussé; Jayalakshmi S. Mysore; Suzanne Tariot; Michael F. Gusella; Vanessa C. Wheeler

Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21-23 (LOD=2.29), and 6q24-26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.


Current Biology | 2010

Demographic history of Oceania inferred from genome-wide data

Andreas Wollstein; Oscar Lao; Christian Becker; Silke Brauer; Ronald J. Trent; Peter Nürnberg; Mark Stoneking; Manfred Kayser

BACKGROUND The human history of Oceania comprises two extremes: the initial colonizations of Near Oceania, one of the oldest out-of-Africa migrations, and of Remote Oceania, the most recent expansion into unoccupied territories. Genetic studies, mostly using uniparentally inherited DNA, have shed some light on human origins in Oceania, particularly indicating that Polynesians are of mixed East Asian and Near Oceanian ancestry. Here, we use ∼1 million single nucleotide polymorphisms (SNPs) to investigate the demographic history of Oceania in a more detailed manner. RESULTS We developed a new approach to account for SNP ascertainment bias, used approximate Bayesian computation simulations to choose the best-fitting model of population history, and estimated demographic parameters. We find that the ancestors of Near Oceanians diverged from ancestral Eurasians ∼27 thousand years ago (kya), suggesting separate initial occupations of both territories. The genetic admixture in Polynesian history between East Asians (∼87%) and Near Oceanians (∼13%) occurred ∼3 kya, prior to the colonization of Polynesia. Fijians are of Polynesian (∼65%) and additional Near Oceanian (∼35%) ancestry not found in Polynesians, with this admixture occurring considerably after the initial settlement of Remote Oceania. Our data support a greater contribution of East Asian women than men in the admixture history of Remote Oceania and highlight population substructure in Polynesia and New Guinea. CONCLUSIONS Despite the inherent ascertainment bias, genome-wide SNP data provide new insights into the genetic history of Oceana. Our approach to correct for ascertainment bias and obtain reliable inferences concerning demographic history should prove useful in other such studies.


American Journal of Medical Genetics Part A | 2003

Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease

Luc Djoussé; Beth Knowlton; Michael R. Hayden; Elisabeth W. Almqvist; Ryan R. Brinkman; Christopher A. Ross; Russell L. Margolis; Adam Rosenblatt; Alexandra Durr; Catherine Dodé; Patrick J. Morrison; Andrea Novelletto; Marina Frontali; Ronald J. Trent; Elizabeth McCusker; Estrella Gomez-Tortosa; D. Mayo; Randi Jones; Andrea Zanko; Martha Nance; Ruth K. Abramson; Oksana Suchowersky; Jane S. Paulsen; Madeline Harrison; Qunying Yang; L. A. Cupples; James F. Gusella; Marcy E. MacDonald; Richard H. Myers

Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. Past studies have shown that the size of expanded CAG repeat is inversely associated with age at onset (AO) of HD. It is not known whether the normal Huntington allele size influences the relation between the expanded repeat and AO of HD. Data collected from two independent cohorts were used to test the hypothesis that the unexpanded CAG repeat interacts with the expanded CAG repeat to influence AO of HD. In the New England Huntington Disease Center Without Walls (NEHD) cohort of 221 HD affected persons and in the HD‐MAPS cohort of 533 HD affected persons, we found evidence supporting an interaction between the expanded and unexpanded CAG repeat sizes which influences AO of HD (P = 0.08 and 0.07, respectively). The association was statistically significant when both cohorts were combined (P = 0.012). The estimated heritability of the AO residual was 0.56 after adjustment for normal and expanded repeats and their interaction. An analysis of tertiles of repeats sizes revealed that the effect of the normal allele is seen among persons with large HD repeat sizes (47–83). These findings suggest that an increase in the size of the normal repeat may mitigate the expression of the disease among HD affected persons with large expanded CAG repeats.


Journal of Clinical Oncology | 2005

Low Microsatellite Instability Is Associated With Poor Prognosis in Stage C Colon Cancer

Maija Kohonen-Corish; Joseph J. Daniel; Charles Chan; B. P. C. Lin; Sun Young Kwun; Owen F. Dent; Varinderpal S. Dhillon; Ronald J. Trent; P. H. Chapuis; E. Leslie Bokey

PURPOSE The significance of low microsatellite instability (MSI-L) in colorectal cancer is poorly understood. No clear biologic distinction has been found between MSI-L and microsatellite stable (MSS) colorectal cancer, and these two phenotypes are usually combined when analyzed against the well-defined high MSI (MSI-H) phenotype. Evidence is emerging that an O(6)-methylguanine DNA methyltransferase (MGMT) gene defect is associated with MSI-L. Therefore, to further define this phenotype, we undertook a detailed analysis of the prognostic significance of MSI-L and loss of MGMT expression in colon cancer. PATIENTS AND METHODS The study cohort was 183 patients with clinicopathologic stage C colon cancer who had not received adjuvant therapy. We analyzed MSI status, MGMT, and mismatch repair protein expression, as well as MGMT and p16 promoter hypermethylation. RESULTS We showed that MSI-L defines a group of patients with poorer survival (P = .026) than MSS patients, and that MSI-L was an independent prognostic indicator (P = .005) in stage C colon cancer. Loss of MGMT protein expression was associated with the MSI-L phenotype but was not a prognostic factor for overall survival in colon cancer. p16 methylation was significantly less frequent in MSI-L than in MSI-H and MSS tumors and was not associated with survival. CONCLUSION MSI-L characterizes a distinct subgroup of stage C colon cancer patients, including the MSI-L subset of proximal colon cancer, who have a poorer outcome. Neither the MGMT defect nor p16 methylation are likely to contribute to the worse prognosis of the MSI-L phenotype.


American Journal of Human Genetics | 2008

Genome-wide Analysis Indicates More Asian than Melanesian Ancestry of Polynesians

Manfred Kayser; Oscar Lao; Kathrin Saar; Silke Brauer; Xingyu Wang; Peter Nürnberg; Ronald J. Trent; Mark Stoneking

Analyses of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in the same populations are sometimes concordant but sometimes discordant. Perhaps the most dramatic example known of the latter concerns Polynesians, in which about 94% of Polynesian mtDNAs are of East Asian origin, while about 66% of Polynesian Y chromosomes are of Melanesian origin. Here we analyze on a genome-wide scale, to our knowledge for the first time, the origins of the autosomal gene pool of Polynesians by screening 377 autosomal short tandem repeat (STR) loci in 47 Pacific Islanders and compare the results with those obtained from 44 Chinese and 24 individuals from Papua New Guinea. Our data indicate that on average about 79% of the Polynesian autosomal gene pool is of East Asian origin and 21% is of Melanesian origin. The genetic data thus suggest a dual origin of Polynesians with a high East Asian but also considerable Melanesian component, reflecting sex-biased admixture in Polynesian history in agreement with the Slow Boat model. More generally, these results also demonstrate that conclusions based solely on uniparental markers, which are frequently used in population history studies, may not accurately reflect the history of the autosomal gene pool of a population.


Journal of Medical Genetics | 1996

Clinical features in 27 patients with Angelman syndrome resulting from DNA deletion.

A Smith; C Wiles; Eric Haan; J McGill; G Wallace; J Dixon; R Selby; Alison Colley; R Marks; Ronald J. Trent

We report the clinical features in 27 Australasian patients with Angelman syndrome (AS), all with a DNA deletion involving chromosome 15(q11-13), spanning markers from D15S9 to D15S12, about 3 center dot 5 Mb of DNA. There were nine males and 18 females. All cases were sporadic. The mean age at last review (end of 1994) was 11 center dot 2 years (range 3 to 34 years). All patients were ataxic, severely retarded, and lacking recognisable speech. In all patients, head circumference (HC) at birth was normal but skewed in distribution, with 62 center dot 5% at the 10th centile. At last review HC was around the 50th centile in three patients (12 center dot 5%) while 15 had poor postnatal head growth. Short stature was not invariable, 5/26 (19%) were on or above the 50th centile. Hypotonia at birth was recorded in 15/24 (63%) and neonatal feeding difficulties were recorded in 20/26 (77%). Epilepsy was present in 26/27 (96%) with onset by the third year of life in 20 patients (83%). Improvement in epilepsy was reported in 11/16 patients (69%) with age. An abnormal EEG was reported in 25/25 patients. Hypopigmentation was present in 19/26 (73%). One patient had oculocutaneous albinism. Five patients could not walk independently. Of the remaining 22 who could walk, age of onset of walking ranged from 2 to 8 years. Disrupted sleep patterns were present in 18/21 patients (86%), with improvement in 9/12 patients (75%) over 10 years of age. The clinical features in this group of deletional AS patients were similar to previous reports, but these have not separated patients into subgroups based on DNA studies. In our group of deletional cases, 100% showed severe mental retardation, ataxic movements, absent language, abnormal EEG, happy disposition (noted in infancy in 95%), normal birth weight and head circumference at birth, and a large, wide mouth. These features occurred with a higher frequency than in AS patients as a whole. Our study also provided information on the evolution of the phenotype. The data can act as a benchmark for comparisons of AS resulting from other genetic mechanisms.

Collaboration


Dive into the Ronald J. Trent's collaboration.

Top Co-Authors

Avatar

Bing Yu

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha Nance

Hennepin County Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Frontali

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Novelletto

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Estrella Gomez-Tortosa

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge