Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald K. June is active.

Publication


Featured researches published by Ronald K. June.


Journal of Orthopaedic Research | 2016

Emerging role of metabolic signaling in synovial joint remodeling and osteoarthritis.

Ronald K. June; Ru Liu-Bryan; Fanxing Long; Timothy M. Griffin

Obesity and associated metabolic diseases collectively referred to as the metabolic syndrome increase the risk of skeletal and synovial joint diseases, including osteoarthritis (OA). The relationship between obesity and musculoskeletal diseases is complex, involving biomechanical, dietary, genetic, inflammatory, and metabolic factors. Recent findings illustrate how changes in cellular metabolism and metabolic signaling pathways alter skeletal development, remodeling, and homeostasis, especially in response to biomechanical and inflammatory stressors. Consequently, a better understanding of the energy metabolism of diarthrodial joint cells and tissues, including bone, cartilage, and synovium, may lead to new strategies to treat or prevent synovial joint diseases such as OA. This rationale was the basis of a workshop presented at the 2016 Annual ORS Meeting in Orlando, FL on the emerging role of metabolic signaling in synovial joint remodeling and OA. The topics we covered included (i) the relationship between metabolic syndrome and OA in clinical and pre‐clinical studies; (ii) the effect of biomechanical loading on chondrocyte metabolism; (iii) the effect of Wnt signaling on osteoblast carbohydrate and amino acid metabolism with respect to bone anabolism; and (iv) the role of AMP‐activated protein kinase in chondrocyte energetic and biomechanical stress responses in the context of cartilage injury, aging, and OA. Although challenges exist for measuring in vivo changes in synovial joint tissue metabolism, the findings presented herein provide multiple lines of evidence to support a central role for disrupted cellular energy metabolism in the pathogenesis of OA.


Journal of Biomechanics | 2014

The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes

Donald L. Zignego; Aaron A. Jutila; Martin K. Gelbke; Daniel M. Gannon; Ronald K. June

Cartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25-200kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction. The first objective of this study was to analyze the spatial variability of applied mechanical deformations in physiologically stiff agarose on cellular and sub-cellular length scales. Fluorescent microspheres were embedded in physiologically stiff agarose hydrogels. Microsphere positions were measured via confocal microscopy and used to calculate displacement and strain fields as a function of spatial position. The second objective was to assess the feasibility of encapsulating primary human chondrocytes in physiologically stiff agarose. The third objective was to determine if primary human chondrocytes could deform in high-stiffness agarose gels. Primary human chondrocyte viability was assessed using live-dead imaging following 24 and 72h in tissue culture. Chondrocyte shape was measured before and after application of 10% compression. These data indicate that (1) displacement and strain precision are ~1% and 6.5% respectively, (2) high-stiffness agarose gels can maintain primary human chondrocyte viability of >95%, and (3) compression of chondrocytes in 4.5% agarose can induce shape changes indicative of cellular compression. Overall, these results demonstrate the feasibility of using high-concentration agarose for applying in vitro compression to chondrocytes as a model for understanding how chondrocytes respond to in vivo loading.


Archives of Biochemistry and Biophysics | 2014

Candidate mediators of chondrocyte mechanotransduction via targeted and untargeted metabolomic measurements

Aaron A. Jutila; Donald L. Zignego; Bradley K. Hwang; Jonathan K. Hilmer; Timothy Hamerly; Cody A. Minor; Seth T. Walk; Ronald K. June

Chondrocyte mechanotransduction is the process by which cartilage cells transduce mechanical loads into biochemical and biological signals. Previous studies have identified several pathways by which chondrocytes transduce mechanical loads, yet a general understanding of which signals are activated and in what order remains elusive. This study was performed to identify candidate mediators of chondrocyte mechanotransduction using SW1353 chondrocytes embedded in physiologically stiff agarose. Dynamic compression was applied to cell-seeded constructs for 0-30min, followed immediately by whole-cell metabolite extraction. Metabolites were detected via LC-MS, and compounds of interest were identified via database searches. We found several metabolites which were statistically different between the experimental groups, and we report the detection of 5 molecules which are not found in metabolite databases of known compounds indicating potential novel molecules. Targeted studies to quantify the response of central energy metabolites to compression found a transient increase in the ratio of NADP+ to NADPH and a continual decrease in the ratio of GDP to GTP, suggesting a flux of energy into the TCA cycle. These data are consistent with the remodeling of cytoskeletal components by mechanically induced signaling, and add substantial new data to a complex picture of how chondrocytes transduce mechanical loads.


PLOS ONE | 2017

Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction

Daniel Salinas; Cody A. Minor; Ross P. Carlson; Carley N. McCutchen; Brendan Mumey; Ronald K. June

Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization.


PLOS ONE | 2015

Non-Invasive Quantification of Cartilage Using a Novel In Vivo Bioluminescent Reporter Mouse

Sarah E. Mailhiot; Donald L. Zignego; Justin R. Prigge; Ella R. Wardwell; Edward E. Schmidt; Ronald K. June

Mouse models are common tools for examining post-traumatic osteoarthritis (OA), which involves cartilage deterioration following injury or stress. One challenge to current mouse models is longitudinal monitoring of the cartilage deterioration in vivo in the same mouse during an experiment. The objective of this study was to assess the feasibility for using a novel transgenic mouse for non-invasive quantification of cartilage. Chondrocytes are defined by expression of the matrix protein aggrecan, and we developed a novel mouse containing a reporter luciferase cassette under the inducible control of the endogenous aggrecan promoter. We generated these mice by crossing a Cre-dependent luciferase reporter allele with an aggrecan creERT2 knockin allele. The advantage of this design is that the targeted knockin retains the intact endogenous aggrecan locus and expresses the tamoxifen-inducible CreERT2 protein from a second IRES-driven open reading frame. These mice display bioluminescence in the joints, tail, and trachea, consistent with patterns of aggrecan expression. To evaluate this mouse as a technology for non-invasive quantification of cartilage loss, we characterized the relationship between loss of bioluminescence and loss of cartilage after induction with (i) ex vivo collagenase digestion, (ii) an in vivo OA model utilizing treadmill running, and (iii) age. Ex vivo experiments revealed that collagenase digestion of the femur reduced both luciferase signal intensity and pixel area, demonstrating a link between cartilage degradation and bioluminescence. In an in vivo model of experimental OA, we found decreased bioluminescent signal and pixel area, which correlated with pathological disease. We detected a decrease in both bioluminescent signal intensity and area with natural aging from 2 to 13 months of age. These results indicate that the bioluminescent signal from this mouse may be used as a non-invasive quantitative measure of cartilage. Future studies may use this reporter mouse to advance basic and preclinical studies of murine experimental OA with applications in synovial joint biology, disease pathogenesis, and drug delivery.


PLOS ONE | 2014

Hydrodynamic delivery of Cre protein to lineage-mark or time-stamp mouse hepatocytes in situ.

Katherine M. Sonsteng; Justin R. Prigge; Emily A. Talago; Ronald K. June; Edward E. Schmidt

Cre-responsive fluorescent marker alleles are powerful tools for cell lineage tracing in mice; however their utility is limited by regulation of Cre activity. When targeting hepatocytes, hydrodynamic delivery of a Cre-expression plasmid can convert Cre-responsive alleles without inducing the intracellular or systemic antiviral responses often associated with viral-derived Cre-expression vectors. In this method, rapid high-volume intravenous inoculation induces hepatocyte-targeted uptake of extracellular molecules. Here we tested whether hydrodynamic delivery of Cre protein or Cre fused to the HIV-TAT cell-penetrating peptide could convert Cre-responsive reporters in hepatocytes of mice. Hydrodynamic delivery of 2 nmol of either Cre or TAT-Cre protein converted the reporter allele in 5 to 20% of hepatocytes. Neither protein gave detectable Cre activity in endothelia, non-liver organs, or non-hepatocyte cells in liver. Using mice homozygous for a Cre-responsive marker that directs red- (Cre-naïve) or green- (Cre-converted) fluorescent proteins to the nucleus, we assessed sub-saturation Cre-activity. One month after hydrodynamic inoculation with Cre protein, 58% of hepatocyte nuclei that were green were also red, indicating that less than half of the hepatocytes that had obtained enough Cre to convert one marker allele to green were able to convert all alleles. For comparison, one month after hydrodynamic delivery of a Cre-expression plasmid with a weak promoter, only 26% of the green nuclei were also red. Our results show that hydrodynamic delivery of Cre protein allows rapid allelic conversion in hepatocytes, but Cre-activity is sub-saturating so many cells will not convert multiple Cre-responsive alleles.


Current Opinion in Rheumatology | 2017

Mechanobiological implications of articular cartilage crystals

Alyssa K. Carlson; Carley N. McCutchen; Ronald K. June

Purpose of review Calcium crystals exist in both pathological and normal articular cartilage. The prevalence of these crystals dramatically increases with age, and crystals are typically found in osteoarthritic cartilage and synovial fluid. Relatively few studies have examined the effects of crystals on cartilage biomechanics or chondrocyte mechanotransduction. The purpose of this review is to describe how crystals could influence cartilage biomechanics and mechanotransduction in osteoarthritis. Recent findings Crystals are found in both loaded and unloaded regions of articular cartilage. Exogenous crystals, in combination with joint motion, result in substantial joint inflammation. Articular cartilage vesicles promote crystal formation, and these vesicles are found near the periphery of chondrocytes. Crystallographic studies report monoclinic symmetry for synthetic crystals, suggesting that crystals will have a large stiffness compared with the cartilage extracellular matrix, the pericellular matrix, or the chondrocyte. This stiffness imbalance may cause crystal-induced dysregulation of chondrocyte mechanotransduction promoting both aging and osteoarthritis chondrocyte phenotypes. Summary Because of their high stiffness compared with cartilage matrix, crystals likely alter chondrocyte mechanotransduction, and high concentrations of crystals within cartilage may alter macroscale biomechanics. Future studies should focus on understanding the mechanical properties of joint crystals and developing methods to understand how crystals affect chondrocyte mechanotransduction.


Biomedical Engineering Research | 2013

A Novel Method for Curvefitting the Stretched Exponential Function to Experimental Data.

Ronald K. June; John P. Cunningham; David P. Fyhrie

The stretched exponential function has many applications in modeling numerous types of experimental relaxation data. However, problems arise when using standard algorithms to fit this function: we have observed that different initializations result in distinct fitted parameters. To avoid this problem, we developed a novel algorithm for fitting the stretched exponential model to relaxation data. This method is advantageous both because it requires only a single adjustable parameter and because it does not require initialization in the solution space. We tested this method on simulated data and experimental stress-relaxation data from bone and cartilage and found favorable results compared to a commonly-used Quasi-Newton method. For the simulated data, strong correlations were found between the simulated and fitted parameters suggesting that this method can accurately determine stretched exponential parameters. When this method was tested on experimental data, high quality fits were observed for both bone and cartilage stress-relaxation data that were significantly better than those determined with the Quasi-Newton algorithm.


Biochemical and Biophysical Research Communications | 2018

Application of global metabolomic profiling of synovial fluid for osteoarthritis biomarkers

Alyssa K. Carlson; Rachel A. Rawle; Erik Adams; Mark C. Greenwood; Brian Bothner; Ronald K. June

Osteoarthritis affects over 250 million individuals worldwide. Currently, there are no options for early diagnosis of osteoarthritis, demonstrating the need for biomarker discovery. To find biomarkers of osteoarthritis in human synovial fluid, we used high performance liquid-chromatography mass spectrometry for global metabolomic profiling. Metabolites were extracted from human osteoarthritic (n = 5), rheumatoid arthritic (n = 3), and healthy (n = 5) synovial fluid, and a total of 1233 metabolites were detected. Principal components analysis clearly distinguished the metabolomic profiles of diseased from healthy synovial fluid. Synovial fluid from rheumatoid arthritis patients contained expected metabolites consistent with the inflammatory nature of the disease. Similarly, unsupervised clustering analysis found that each disease state was associated with distinct metabolomic profiles and clusters of co-regulated metabolites. For osteoarthritis, co-regulated metabolites that were upregulated compared to healthy synovial fluid mapped to known disease processes including chondroitin sulfate degradation, arginine and proline metabolism, and nitric oxide metabolism. We utilized receiver operating characteristic analysis to determine the diagnostic value of each metabolite and identified 35 metabolites as potential biomarkers of osteoarthritis, with an area under the receiver operating characteristic curve >0.9. These metabolites included phosphatidylcholine, lysophosphatidylcholine, ceramides, myristate derivatives, and carnitine derivatives. This pilot study provides strong justification for a larger cohort-based study of human osteoarthritic synovial fluid using global metabolomics. The significance of these data is the demonstration that metabolomic profiling of synovial fluid can identify relevant biomarkers of joint disease.


bioRxiv | 2018

Inhibition of Early Response Genes Prevents Changes in Global Joint Metabolomic Profiles in Mouse Post-Traumatic Osteoarthritis

Dominik R. Haudenschild; Alyssa K. Carlson; Donald L. Zignego; Jasper H.N. Yik; Jonathan K. Hilmer; Ronald K. June

Osteoarthritis (OA) is the most common degenerative joint disease, and joint injury increases the risk of OA by 10-fold. Although the injury event itself damages joint tissues, a substantial amount of secondary damage is mediated by the cellular responses to the injury. Cellular responses include the production and activation of proteases (MMPs, ADAMTSs, Cathepsins), the production of inflammatory cytokines, and we hypothesize, changes to the joint metabolome. The trajectory of cellular responses is driven by the transcriptional activation of early response genes, which requires Cdk9-dependent RNA Polymerase II phosphorylation. Flavopiridol is a potent and selective inhibitor of Cdk9 kinase activity, which prevents the transcriptional activation of early response genes. To model post-traumatic osteoarthritis, we subjected mice to non-invasive ACL-rupture joint injury. Following injury, mice were treated with flavopiridol to inhibit Cdk9-dependent transcriptional activation, or vehicle control. Global joint metabolomics were analyzed 1 hour after injury. We found that injury induced metabolomic changes, including increases in Vitamin D3 metabolism and others. Importantly, we found that inhibition of primary response gene activation at the time of injury largely prevented the global changes in the metabolomics profiles. Cluster analysis of joint metabolomes identified groups of injury-induced and drug-responsive metabolites, which may offer novel targets for cell-mediated secondary joint damage. Metabolomic profiling provides an instantaneous snapshot of biochemical activity representing cellular responses, and these data demonstrate the potential for inhibition of early response genes to alter the trajectory of cell-mediated degenerative changes following joint injury. Significance Statement Joint injury is an excellent predictor of future osteoarthritis. It is increasingly apparent that the acute cellular responses to injury contribute to the initiation and pathogenesis of OA. Although changes to the joint transcriptome have been extensively studied in the context of joint injury, little is known about changes to small-molecule metabolites. Here we use a non-invasive ACL rupture model of joint injury in mice to identify injury-induced changes to the global metabolomic profiles. In one experimental group we prevented the activation of primary response gene transcription using the Cdk9 inhibitor flavopiridol. Through this comparison, we identified two sets of metabolites that change acutely after joint injury: those that require transcription of primary response genes, and those that do not.

Collaboration


Dive into the Ronald K. June's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Bothner

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brendan Mumey

Montana State University

View shared research outputs
Top Co-Authors

Avatar

C. McCutchen

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cody A. Minor

Montana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge