Ronald K. Siu
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronald K. Siu.
Biomaterials | 2009
Min Lee; Weiming Li; Ronald K. Siu; Julie Whang; Xinli Zhang; Chia Soo; Kang Ting; Benjamin M. Wu
Bone morphogenetic proteins (BMPs) are currently approved for spinal fusion, tibial fracture repair, and maxillofacial bone regeneration. However, BMP pleiotropism, paradoxical activities on precursor cells, and unexpected side effects at local and ectopic sites may limit their usage. Thus, the need remains for alternative osteoinductive factors that provide more bone-specific activities with fewer adverse effects. Nell-1 [Nel-like molecule-1; Nel (a protein highly expressed in neural tissue encoding epidermal growth factor like domain)] is a novel osteogenic protein believed to specifically target cells committed to the osteogenic lineage. The objective of this project is to incorporate Nell-1 into a moldable putty carrier that can adapt to bony defects and deliver Nell-1 to the local microenvironment. We show here that moldability can be achieved by mixing hyaluronan hydrogel with two types of particles: demineralized bone powder for osteoconductivity, and biomimetic apatite-coated alginate/chitosan microparticles for controlled Nell-1 delivery. Besides enhancing overall osteoconductivity of the carrier, the biomimetic apatite coating also provides a more sustained release (approximately 15% cumulative release over 30 days) and greatly reduces the initial burst release that is observed with non-coated alginate/chitosan microparticles (approximately 40% release after 1 day). The efficacy of Nell-1 delivery from these carriers was evaluated in a rat spinal fusion model against Nell-free carriers as controls. At 4 weeks post-implantation, Nell-1 enhanced spinal fusion rates as assessed by manual palpation, radiographs, high-resolution micro-computerized tomography (microCT), and histology. This moldable putty carrier system appears to be a suitable carrier for promoting osteogenesis, and will be further evaluated in larger animal models over longer periods to follow the remodeling of the regenerated bone.
Biomaterials | 2012
Yi Liu; Zhong Zheng; Janette N. Zara; Chingyun Hsu; Donnalisa E. Soofer; Kevin S. Lee; Ronald K. Siu; Lloyd S. Miller; Xinli Zhang; Doug Carpenter; Chunling Wang; Kang Ting; Chia Soo
Implant-associated bacterial infections are one of the most serious complications in orthopedic surgery. Treatment of these infections often requires multiple operations, device removal, long-term systemic antibiotics, and extended rehabilitation, and is frequently ineffective, leading to worse clinical outcomes and increased financial costs. In this study, we evaluated silver nanoparticle/poly(DL-lactic-co-glycolic acid) (PLGA)-coated stainless steel alloy(SNPSA) as a potential antimicrobial implant material. We found that SNPSA exhibited strong antibacterial activity in vitro and ex vivo, and promoted MC3T3-E1 pre-osteoblasts proliferation and maturation in vitro. Furthermore, SNPSA implants induced osteogenesis while suppressing bacterial survival in contaminated rat femoral canals. Our results indicate that SNPSA has simultaneous antimicrobial and osteoinductive properties that make it a promising therapeutic material in orthopedic surgery.
Biomaterials | 2010
Zhong Zheng; Wei Yin; Janette N. Zara; Weiming Li; Jinny Kwak; Rachna Mamidi; Min Lee; Ronald K. Siu; Richard Ngo; Joyce Wang; Doug Carpenter; Xinli Zhang; Benjamin M. Wu; Kang Ting; Chia Soo
Healing of contaminated/infected bone defects is a significant clinical challenge. Prevalence of multi-antibiotic resistant organisms has renewed interest in the use of antiseptic silver as an effective, but less toxic antimicrobial with decreased potential for bacterial resistance. In this study, we demonstrated that metallic nanosilver particles (with a size of 20-40nm)-poly(lactic-co-glycolic acid) (PLGA) composite grafts have strong antibacterial properties. In addition, nanosilver particles-PLGA composite grafts did not inhibit adherence, proliferation, alkaline phosphatase activity, or mineralization of ongrowth MC3T3-E1 pre-osteoblasts compared to PLGA controls. Furthermore, nanosilver particles did not affect the osteoinductivity of bone morphogenetic protein 2 (BMP-2). Infected femoral defects implanted with BMP-2 coupled 2.0% nanosilver particles-PLGA composite grafts healed in 12 weeks without evidence of residual bacteria. In contrast, BMP-2 coupled PLGA control grafts failed to heal in the presence of continued bacterial colonies. Our results indicate that nanosilver of defined particle size is bactericidal without discernable in vitro and in vivo cytotoxicity or negative effects on BMP-2 osteoinductivity, making it an ideal antimicrobial for bone regeneration in infected wounds.
Journal of Dental Research | 2010
X. Zhang; Janette N. Zara; Ronald K. Siu; Kang Ting; Chia Soo
Efforts to enhance bone regeneration in orthopedic and dental cases have grown steadily for the past decade, in line with increasingly sophisticated regenerative medicine. To meet the unprecedented demand for novel osteospecific growth factors with fewer adverse effects compared with those of existing adjuncts such as BMPs, our group has identified a craniosynostosis-associated secreted molecule, NELL-1, which is a potent growth factor that is highly specific to the osteochondral lineage, and has demonstrated robust induction of bone in multiple in vivo models from rodents to pre-clinical large animals. NELL-1 is preferentially expressed in osteoblasts under direct transcriptional control of Runx2, and is well-regulated during skeletal development. NELL-1/Nell-1 can promote orthotopic bone regeneration via either intramembranous or endochondral ossification, both within and outside of the craniofacial complex. Unlike BMP-2, Nell-1 cannot initiate ectopic bone formation in muscle, but can induce bone marrow stromal cells (BMSCs) to form bone in a mouse muscle pouch model, exhibiting specificity that BMPs lack. In addition, synergistic osteogenic effects of Nell-1 and BMP combotherapy have been observed, and are likely due to distinct differences in their signaling pathways. NELL-1’s unique role as a novel osteoinductive growth factor makes it an attractive alternative with promise for future clinical applications. [Note: NELL-1 and NELL-1 indicate the human gene and protein, respectively; Nell-1 and Nell-1 indicate the mouse gene and protein, respectively.]
Tissue Engineering Part A | 2010
Weiming Li; Min Lee; Julie Whang; Ronald K. Siu; Xinli Zhang; Chen Liu; Benjamin M. Wu; Jeffrey C. Wang; Kang Ting; Chia Soo
Nell-1 (Nel-like molecule-1; Nel: protein strongly expressed in neural tissue containing epidermal growth factor-like domain) is a promising osteoblast-specific growth factor for osteoinductive therapies that may circumvent adverse effects, such as nonspecific function and ectopic bone formation, associated with more established osteogenic growth factors such as bone morphogenetic proteins. Beta-tricalcium phosphate (beta-TCP), an osteoconductive, biodegradable ceramic biomaterial, has been used successfully to deliver osteoinducers for bone regeneration. The aim of this study was to develop a carrier system for efficiently delivering biologically active Nell-1 protein. After a 40% initial burst release, beta-TCP particles retained the majority of adsorbed Nell-1 protein in vitro. To test this system in vivo, L4/L5 spinal fusion was performed in three groups of rats (n = 8 each): (1) 5 microg Nell-1 in beta-TCP/demineralized bone matrix putty (DBX); (2) 2.5 microg Nell-1 in beta-TCP/DBX; (3) beta-TCP/DBX only. Fusion was assessed by radiography, palpation, microcomputed tomography, and histological analysis. After 4 weeks, 75% of Nell-1-treated animals exhibited fusion, with a significant increase in new bone volume, whereas only 25% of Nell-free control animals exhibited fusion. Our findings suggest that beta-TCP/DBX can increase both the biochemical stability and biological efficiency of Nell-1 protein.
Plastic and Reconstructive Surgery | 2011
Weiming Li; Janette N. Zara; Ronald K. Siu; Min Lee; Tara Aghaloo; Xinli Zhang; Benjamin M. Wu; Arthur A. Gertzman; Kang Ting; Chia Soo
Background: Effective regeneration of bone is critical for fracture repair and incorporation and healing of bone grafts used during orthopedic, dental, and craniofacial reconstructions. Nel-like molecule-1 (Nell-1) is a secreted protein identified from prematurely fused cranial sutures of craniosynostosis patients that has been found to specifically stimulate osteogenic cell differentiation and bone formation. To test the in vivo osteoinductive capacity of Nell-1, a critical-sized femoral segmental defect model in athymic rats was used. Methods: A 6-mm defect, which predictably leads to nonunion if left untreated, was created in the left femur of each rat. Three treatment groups (n = 8 each) were created consisting of rats treated with (1) 1.5 mg/ml Nell-1, (2) 0.6 mg/ml Nell-1, and (3) phosphate-buffered saline only as a Nell-free control. Phosphate-buffered saline or Nell-1 was mixed with demineralized bone matrix as a carrier before implantation. All animals were euthanized 12 weeks after surgery, and bone regeneration was evaluated using radiographic, three-dimensional micro–computed tomographic, and histologic analysis. Results: Both Nell-1–treated groups had significantly greater bone formation compared with the Nell-free group, with bone volume increasing with increasing Nell-1 concentration. Conclusions: Nell-1 in a demineralized bone matrix carrier can significantly improve bone regeneration in a critical-sized femoral segmental defect in a dose-dependent manner. The results of this study demonstrate that Nell-1 is a potent osteospecific growth factor that warrants further investigation. Results also support the potential application of Nell-1 as a bone graft substitute in multiple clinical scenarios involving repair of critical bone loss when autograft bone is limited or unavailable.
Journal of Bone and Mineral Research | 2011
Weiwei Chen; Xinli Zhang; Ronald K. Siu; Feng Chen; Jia Shen; Janette N. Zara; Cymbeline T. Culiat; Sotirios Tetradis; Kang Ting; Chia Soo
Nell‐1 is a growth factor required for normal skeletal development and expression of extracellular matrix proteins required for bone and cartilage cell differentiation. We identified the transcription factor nuclear factor of activated T cells (Nfatc2) as a primary response gene of Nell‐1 through a microarray screen, with validation using real‐time polymerase chain reaction (PCR). We investigated the effects of recombinant Nell‐1 protein on the chondrogenic cell line ATDC5 and primary mouse chondrocytes. The osteochondral transcription factor Runx2 was investigated as a possible intermediary between Nell‐1 and Nfatc2 using adenoviral overexpression of wild‐type and dominant‐negative Runx2. Nell‐1 transiently induced both transcription and translation of Nfatc2, an effect inhibited by transduction of dominant‐negative Runx2, suggesting that Runx2 was necessary for Nfatc2 induction. Differentiation assays revealed inhibitory effects of Nell‐1 on ATDC5 cells. Although proliferation was unaffected, expression of chondrocyte‐specific genes was decreased, and cartilage nodule formation and proteoglycan accumulation were suppressed. siRNA knockdown of Nfatc2 significantly reversed these inhibitory effects. To elucidate the relationship between Nell‐1, Runx2, and Nfatc2 in vivo, their presence and distribution were visualized in femurs of wild‐type and Nell1‐deficient mice at both neonatal and various developmental stages using immunohistochemistry. All three proteins colocalized in the perichondrium of wild‐type femurs but stained weakly or were completely absent in Nell1‐deficient femurs at neonatal stages. Thus Nfatc2 likely plays an important role in Nell‐1‐mediated osteochondral differentiation in vitro and in vivo. To our knowledge, this is the first demonstration that Nfatc2 is a primary response gene of Nell‐1.
American Journal of Pathology | 2016
Jia Shen; Aaron W. James; Xinli Zhang; Shen Pang; Janette N. Zara; Greg Asatrian; Michael Chiang; Min Lee; Kevork Khadarian; Alan Nguyen; Kevin S. Lee; Ronald K. Siu; Sotirios Tetradis; Kang Ting; Chia Soo
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis.
Journal of Craniofacial Surgery | 2012
Xinli Zhang; Kang Ting; Dharmini Pathmanathan; Theodore Ko; Weiwei Chen; Feng Chen; Haofu Lee; Aaron W. James; Ronald K. Siu; Jia Shen; Cymbeline T. Culiat; Chia Soo
Abstract Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1’s role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1–deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia. In addition, a global reduction in osteoblast markers was observed, including reductions in Runx2, alkaline phosphatase, and osteocalcin. Remarkably, detailed analysis of endochondral bones showed dysplasia as well. The chondrocranium in the END mouse showed enrichment for early, proliferating Sox9+ chondrocytes, whereas in contrast markers of chondrocytes maturation were reduced. These data suggest that Nell-1 is an important growth factor for regulation of osteochondral differentiation, by regulating both Runx2 and Sox9 expression within the calvarium. In summary, Nell-1 is required for normal craniofacial membranous and endochondral skeletal development.
Tissue Engineering Part A | 2011
Janette N. Zara; Ronald K. Siu; Xinli Zhang; Jia Shen; Richard Ngo; Min Lee; Weiming Li; Michael Chiang; Jonguk Chung; Jinny Kwak; Benjamin M. Wu; Kang Ting; Chia Soo