Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald Kaminsky is active.

Publication


Featured researches published by Ronald Kaminsky.


Acta Tropica | 1997

The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro

B Räz; M Iten; Y Grether-Bühler; Ronald Kaminsky; Reto Brun

Alamar Blue, an indicator for metabolic cell function, was evaluated as a fluorescent and as a colorimetric dye in drug sensitivity assays for human pathogenic African trypanosomes, Trypanosoma brucei rhodesiense and T.b. gambiense. The experimental conditions were adjusted to find those where the relationship between trypanosome number and Alamar Blue signal was linear over the widest possible range. Fluorescent signals correlated to trypanosome numbers from 10(4) trypanosomes/ml (T.b. rhodesiense) and 10(5) trypanosomes/ml (T.b. gambiense) up to 2-3 x 10(6) trypanosomes/ml when trypanosomes were incubated for 2 h with 10% Alamar Blue. Trypanocidal activity of common drugs (melarsoprol, DFMO, suramin, pentamidine and diminazene aceturate) was determined employing this assay. The IC50 values obtained were comparable to those obtained with another fluorochrome, BCECF-AM. The Alamar Blue assay can be applied for drug screening, since it is simple, reproducible and economical. The assay can also be used in field sites with less equipped laboratories, because in addition to fluorometric endpoint determination, a colorimetric reading is possible.


Nature | 2008

A new class of anthelmintics effective against drug-resistant nematodes

Ronald Kaminsky; Pierre Ducray; Martin Jung; Ralph Clover; Lucien Rufener; Jacques Bouvier; Sandra Schorderet Weber; Andre Wenger; Susanne Christine Wieland-Berghausen; Thomas Goebel; Noëlle Gauvry; Francois Pautrat; Thomas Skripsky; Olivier Froelich; Clarisse Komoin-Oka; Bethany Westlund; Ann Sluder; Pascal Mäser

Anthelmintic resistance in human and animal pathogenic helminths has been spreading in prevalence and severity to a point where multidrug resistance against the three major classes of anthelmintics—the benzimidazoles, imidazothiazoles and macrocyclic lactones—has become a global phenomenon in gastrointestinal nematodes of farm animals. Hence, there is an urgent need for an anthelmintic with a new mode of action. Here we report the discovery of the amino-acetonitrile derivatives (AADs) as a new chemical class of synthetic anthelmintics and describe the development of drug candidates that are efficacious against various species of livestock-pathogenic nematodes. These drug candidates seem to have a novel mode of action involving a unique, nematode-specific clade of acetylcholine receptor subunits. The AADs are well tolerated and of low toxicity to mammals, and overcome existing resistances to the currently available anthelmintics.


Eukaryotic Cell | 2003

Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei.

Enock Matovu; Mhairi Stewart; Federico Geiser; Reto Brun; Pascal Mäser; Lynsey J. M. Wallace; Richard Burchmore; John Enyaru; Michael P. Barrett; Ronald Kaminsky; Thomas Seebeck; Harry P. de Koning

ABSTRACT Sleeping sickness, caused by Trypanosoma brucei spp., has become resurgent in sub-Saharan Africa. Moreover, there is an alarming increase in treatment failures with melarsoprol, the principal agent used against late-stage sleeping sickness. In T. brucei, the uptake of melarsoprol as well as diamidines is thought to be mediated by the P2 aminopurine transporter, and loss of P2 function has been implicated in resistance to these agents. The trypanosomal gene TbAT1 has been found to encode a P2-type transporter when expressed in yeast. Here we investigate the role of TbAT1 in drug uptake and drug resistance in T. brucei by genetic knockout of TbAT1. Tbat1-null trypanosomes were deficient in P2-type adenosine transport and lacked adenosine-sensitive transport of pentamidine and melaminophenyl arsenicals. However, the null mutants were only slightly resistant to melaminophenyl arsenicals and pentamidine, while resistance to other diamidines such as diminazene was more pronounced. Nevertheless, the reduction in drug sensitivity might be of clinical significance, since mice infected with tbat1-null trypanosomes could not be cured with 2 mg of melarsoprol/kg of body weight for four consecutive days, whereas mice infected with the parental line were all cured by using this protocol. Two additional pentamidine transporters, HAPT1 and LAPT1, were still present in the null mutant, and evidence is presented that HAPT1 may be responsible for the residual uptake of melaminophenyl arsenicals. High-level arsenical resistance therefore appears to involve the loss of more than one transporter.


International Journal of Antimicrobial Agents | 2003

P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance

Dominique Kerboeuf; William Blackhall; Ronald Kaminsky; Georg von Samson-Himmelstjerna

Infestation with parasitic helminths is a common problem in human populations of third world countries and is ubiquitous in livestock and other domestic animals. The cell-membrane efflux pump, P-glycoprotein (Pgp), appears to contribute to anthelmintic resistance. Pgp have been identified from both phyla of parasitic helminths, Platyhelmintha and Nematoda, and alterations in expression levels and allele frequencies of Pgp in anthelmintic-resistant populations have been observed in nematodes. Localisation of Pgp has been studied in the free-living nematode Caenorhabditis elegans and in the sheep parasite Haemonchus contortus using specific monoclonal antibodies or lectins. Reversing agents used in human studies, such as the calcium-channel blocker verapamil (VPL), appear to have similar effects in helminths as they do in human cancer cells: the efficacy of drug treatment is increased in drug-resistant parasites when reversing agents are co-administered with the anthelmintic. The functional role of the Pgp glycosylation was also studied using a lectin specific for the alpha-mannosyl residues and showed that resistance can be associated with a decreased affinity of the lectin for Pgp sites and that up to 50% reversion in the resistance to benzimidazoles (BZ) can be obtained using this lectin. Furthermore, the current knowledge on the role of Pgp in molecular mechanisms of drug resistance in the parasitic protozoan genus Trypanosoma is discussed. In some Trypanosoma species it was shown that drug resistance was associated with reduced uptake and in other ones with increased efflux. Several trypanosome Pgp-coding sequences have been described. In contrast to earlier data, most recent observations, based on experimentally overexpressed Pgp in Trypanosoma brucei, indicate a possible involvement in the mechanism of drug resistance in this parasite.


Microbes and Infection | 2001

Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle.

Enock Matovu; Thomas Seebeck; John Enyaru; Ronald Kaminsky

Drug resistance in pathogenic trypanosomes threatens successful control of fatal sleeping sickness in man and hinders economic livestock production in sub-Saharan Africa. We report on the occurrence and development of drug resistance, and discuss the genetic basis of such resistance in Trypanosoma brucei. Understanding these mechanisms at the molecular level will enable improved management of existing drugs and provide valuable clues to the development of new trypanocides.


The FASEB Journal | 2012

The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets

Christelle Godel; Sujai Kumar; Georgios Koutsovoulos; Philipp Ludin; Daniel Nilsson; Francesco Comandatore; Nicola Wrobel; Marian Thompson; Christoph D. Schmid; Susumu Goto; Frédéric Bringaud; Adrian J. Wolstenholme; Claudio Bandi; Christian Epe; Ronald Kaminsky; Mark A. Blaxter; Pascal Mäser

The heartworm Dirofilaria immitis is an important parasite of dogs. Transmitted by mosquitoes in warmer climatic zones, it is spreading across southern Europe and the Americas at an alarming pace. There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we have sequenced the genomes of D. immitis and its endosymbiont Wolbachia. We predict 10,179 protein coding genes in the 84.2 Mb of the nuclear genome, and 823 genes in the 0.9‐Mb Wolbachia genome. The D. immitis genome harbors neither DNA transposons nor active retrotransposons, and there is very little genetic variation between two sequenced isolates from Europe and the United States. The differential presence of anabolic pathways such as heme and nucleotide biosynthesis hints at the intricate metabolic interrelationship between the heartworm and Wolbachia. Comparing the proteome of D. immitis with other nematodes and with mammalian hosts, we identify families of potential drug targets, immune modulators, and vaccine candidates. This genome sequence will support the development of new tools against dirofilariasis and aid efforts to combat related human pathogens, the causative agents of lymphatic filariasis and river blindness.—Godel, C., Kumar, S., Koutsovoulos, G., Ludin, P., Nilsson, D., Comandatore, F., Wrobel, N., Thompson, M., Schmid, C. D., Goto, S., Bringaud, F., Wolstenholme, A., Bandi, C., Epe, C., Kaminsky, R., Blaxter, M., Mäser, P. The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets. FASEB J. 26, 4650–4661 (2012). www.fasebj.org


PLOS Pathogens | 2009

Haemonchus contortus Acetylcholine Receptors of the DEG-3 Subfamily and Their Role in Sensitivity to Monepantel

Lucien Rufener; Pascal Mäser; Isabel Roditi; Ronald Kaminsky

Gastro-intestinal nematodes in ruminants, especially Haemonchus contortus, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with Caenorhabditis elegans suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from H. contortus and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant H. contortus populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible H. contortus and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (Hco-mptl-1, formerly named Hc-acr-23H), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene Hco-des-2H, the same 135 bp insertion in the 5′ UTR created additional, out of frame start codons in 2 independent H. contortus AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes Hco-mptl-1, Hco-des-2H and Hco-deg-3H as quantified by real-time PCR. These results indicate that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against H. contortus and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs.


International Journal for Parasitology-Drugs and Drug Resistance | 2014

Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

Andrew C. Kotze; Peter W. Hunt; Philip Skuce; Georg von Samson-Himmelstjerna; Richard J. Martin; Heinz Sager; Jürgen Krücken; Jane E. Hodgkinson; Anne Lespine; Aaron R. Jex; John S. Gilleard; Robin N. Beech; Adrian J. Wolstenholme; Janina Demeler; Alan P. Robertson; Claude L. Charvet; Cedric Neveu; Ronald Kaminsky; Lucien Rufener; Melanie Alberich; Cécile Ménez; Roger K. Prichard

Graphical abstract


Parasitology Research | 2009

Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes.

Georg von Samson-Himmelstjerna; G. C. Coles; Frank Jackson; Christian Bauer; Fred H.M. Borgsteede; Veli Yilgor Cirak; Janina Demeler; Alison Donnan; Pierre Dorny; Christian Epe; Achim Harder; Johan Höglund; Ronald Kaminsky; Dominique Kerboeuf; Ulla Küttler; E. Papadopoulos; Janez Posedi; John Small; Marián Várady; Jozef Vercruysse; N. Wirtherle

The ability to reliably detect anthelmintic resistance is a crucial part of resistance management. If data between countries are to be compared, the same test should give the same results in each laboratory. As the egg hatch test for benzimidazole resistance is used for both research and surveys, the ability of different laboratories to obtain similar results was studied through testing of known isolates of cyathostomins, Haemonchus contortus, Ostertagia ostertagi, and Cooperia oncophora in programs supported by the EU (Cost B16 and FP6-PARASOL). Initial results showed difficulties in obtaining reproducible and similar data within and between laboratories. A series of ring tests, i.e., simultaneous and coordinated rounds of testing of nematode isolates in different laboratories was subsequently performed. By adopting identical protocols, especially the use of deionized water and making dilutions of thiabendazole in dimethyl sulfoxide in the final ring test, laboratories correctly identified both susceptible and resistant isolates. The protocols for the test and preparation of solutions of thiabendazole are described.


Tropical Medicine & International Health | 2001

Melarsoprol refractory T. b. gambiense from Omugo, north-western Uganda

Enock Matovu; John Enyaru; D. Legros; Cecile Schmid; T. Seebeck; Ronald Kaminsky

Culture adapted T. b. gambiense isolated from Northwest Uganda were exposed to 0.001–0.14 μg/ml melarsoprol or 1.56–100 μg/ml DL‐α‐difluoromethylornithine (DFMO). Minimum inhibitory concentrations (MICs) of each drug were scored for each isolate after a period of 10 days drug exposure. The results indicate that T. b. gambiense isolates from Northwest Uganda had elevated MIC values for melarsoprol ranging from 0.009 to 0.072 μg/ml as compared with T. b. gambiense isolates from Cote d‘Ivoire with MIC values ranging from 0.001 to 0.018 μg/ml or with T. b. rhodesiense from Southeast Uganda with MIC values from 0.001 to 0.009 μg/ml. All MIC values obtained fell below expected peak melarsoprol concentrations in serum of treated patients. However, it may not be possible to maintain constant drug concentrations in serum of patients as was the case in our in vitro experiments. Importantly, the MIC of 0.072 μg/ml exhibited by one of the isolates from Northwest Uganda was above levels attainable in CSF indicating that this isolate would probably not be eliminated from CSF of treated patients. PCR amplification of the gene encoding the P2‐like adenosine transporter followed by restriction digestion with Sfa NI enzyme revealed presence of fragments previously observed in a trypanosome clone with laboratory‐induced arsenic resistance. From our findings it appears that reduced drug susceptibility may be one factor for the frequent relapses of sleeping sickness after melarsoprol treatment occuring in Northwest Uganda.

Collaboration


Dive into the Ronald Kaminsky's collaboration.

Top Co-Authors

Avatar

Pascal Mäser

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto Brun

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge