Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald M. Allen is active.

Publication


Featured researches published by Ronald M. Allen.


Blood | 2009

Epigenetic regulation of the alternatively activated macrophage phenotype.

Haitao Wen; Callie Ann Sprunger Corsa; Tianju Liu; Ana Lucia Coelho; Ronald M. Allen; William F. Carson; Karen A. Cavassani; Xiangzhi Li; Nicholas W. Lukacs; Cory M. Hogaboam; Yali Dou; Steven L. Kunkel

Alternatively activated (M2) macrophages play critical roles in diverse chronic diseases, including parasite infections, cancer, and allergic responses. However, little is known about the acquisition and maintenance of their phenotype. We report that M2-macrophage marker genes are epigenetically regulated by reciprocal changes in histone H3 lysine-4 (H3K4) and histone H3 lysine-27 (H3K27) methylation; and the latter methylation marks are removed by the H3K27 demethylase Jumonji domain containing 3 (Jmjd3). We found that continuous interleukin-4 (IL-4) treatment leads to decreased H3K27 methylation, at the promoter of M2 marker genes, and a concomitant increase in Jmjd3 expression. Furthermore, we demonstrate that IL-4-dependent Jmjd3 expression is mediated by STAT6, a major transcription factor of IL-4-mediated signaling. After IL-4 stimulation, activated STAT6 is increased and binds to consensus sites at the Jmjd3 promoter. Increased Jmjd3 contributes to the decrease of H3K27 dimethylation and trimethylation (H3K27me2/3) marks as well as the transcriptional activation of specific M2 marker genes. The decrease in H3K27me2/3 and increase in Jmjd3 recruitment were confirmed by in vivo studies using a Schistosoma mansoni egg-challenged mouse model, a well-studied system known to support an M2 phenotype. Collectively, these data indicate that chromatin remodeling is mechanistically important in the acquisition of the M2-macrophage phenotype.


Biochemical and Biophysical Research Communications | 1990

Human neutrophils exhibit disparate chemotactic factor gene expression

Robert M. Strieter; Keita Kasahara; Ronald M. Allen; Henry J. Showell; Theodore J. Standiford; Steven L. Kunkel

The evolution of acute inflammation from initiation through resolution is associated with the changing character of the infiltrating leukocytes. Recruitment of these leukocytes is dependent upon the generation of chemotactic factors that have either global or specific activity for a particular leukocyte. In this manuscript we present data demonstrating that human neutrophils can express mRNA for neutrophil chemotactic factor/interleukin 8 (IL-8), but fail to express mRNA for monocyte chemotactic protein (MCP-1). The expression of IL-8 was observed upon adherence or in response to stimulation with lipopolysaccharide. Maximal IL-8 antigenic production was noted at 24 hrs. These studies demonstrate a disparate expression of chemotactic cytokines by neutrophils.


PLOS ONE | 2013

Cytokine Induced Phenotypic and Epigenetic Signatures Are Key to Establishing Specific Macrophage Phenotypes

Nicolai Kittan; Ronald M. Allen; Abhay Dhaliwal; Karen A. Cavassani; Matthew Schaller; Katherine Gallagher; William F. Carson; Sumanta Mukherjee; Jolanta Grembecka; Tomasz Cierpicki; Gabor Jarai; John Westwick; Steven L. Kunkel; Cory M. Hogaboam

Macrophages (MΦ) play an essential role in innate immune responses and can either display a pro-inflammatory, classically activated phenotype (M1) or undergo an alternative activation program (M2) promoting immune regulation. M-CSF is used to differentiate monocytes into MΦ and IFN-γ or IL-4+IL-13 to further polarize these cells towards M1 or M2, respectively. Recently, differentiation using only GM-CSF or M-CSF has been described to induce a M1- or M2-like phenotype, respectively. In this study, we combined both approaches by differentiating human MΦ in GM-CSF or M-CSF followed by polarization with either IFN-γ or IL-4+IL-13. We describe the phenotypic differences between CD14hi CD163hi CD206int FOLR2-expressing M-CSF MΦ and CD14lo CD163lo CD206hi GM-CSF MΦ but show that both macrophage populations reacted similarly to further polarization with IFN-γ or IL-4+IL-13 with up- and down-regulation of common M1 and M2 marker genes. We also show that high expression of the mannose receptor (CD206), a marker of alternative activation, is a distinct feature of GM-CSF MΦ. Changes of the chromatin structure carried out by chromatin modification enzymes (CME) have been shown to regulate myeloid differentiation. We analyzed the expression patterns of CME during MΦ polarization and show that M1 up-regulate the histone methyltransferase MLL and demethylase KDM6B, while resting and M2 MΦ were characterized by DNA methyltransferases and histone deacetylases. We demonstrate that MLL regulates CXCL10 expression and that this effect could be abrogated using a MLL-Menin inhibitor. Taken together we describe the distinct phenotypic differences of GM-CSF or M-CSF MΦ and demonstrate that MΦ polarization is regulated by specific epigenetic mechanisms. In addition, we describe a novel role for MLL as marker for classical activation. Our findings provide new insights into MΦ polarization that could be helpful to distinguish MΦ activation states.


Diabetes | 2015

Epigenetic Changes in Bone Marrow Progenitor Cells Influence the Inflammatory Phenotype and Alter Wound Healing in Type 2 Diabetes

Katherine Gallagher; Amrita Joshi; William F. Carson; Matthew Schaller; Ronald M. Allen; Sumanta Mukerjee; Nico Kittan; Eva L. Feldman; Peter K. Henke; Cory M. Hogaboam; Charles F. Burant; Steven L. Kunkel

Classically activated (M1) macrophages are known to play a role in the development of chronic inflammation associated with impaired wound healing in type 2 diabetes (T2D); however, the mechanism responsible for the dominant proinflammatory (M1) macrophage phenotype in T2D wounds is unknown. Since epigenetic enzymes can direct macrophage phenotypes, we assessed the role of histone methylation in bone marrow (BM) stem/progenitor cells in the programming of macrophages toward a proinflammatory phenotype. We have found that a repressive histone methylation mark, H3K27me3, is decreased at the promoter of the IL-12 gene in BM progenitors and this epigenetic signature is passed down to wound macrophages in a murine model of glucose intolerance (diet-induced obese). These epigenetically “preprogrammed” macrophages result in poised macrophages in peripheral tissue and negatively impact wound repair. We found that in diabetic conditions the H3K27 demethylase Jmjd3 drives IL-12 production in macrophages and that IL-12 production can be modulated by inhibiting Jmjd3. Using human T2D tissue and murine models, we have identified a previously unrecognized mechanism by which macrophages are programmed toward a proinflammatory phenotype, establishing a pattern of unrestrained inflammation associated with nonhealing wounds. Hence, histone demethylase inhibitor–based therapy may represent a novel treatment option for diabetic wounds.


PLOS Pathogens | 2011

The critical role of Notch ligand Delta-like 1 in the pathogenesis of influenza A virus (H1N1) infection.

Toshihiro Ito; Ronald M. Allen; William F. Carson; Matthew Schaller; Karen A. Cavassani; Cory M. Hogaboam; Nicholas W. Lukacs; Akihiro Matsukawa; Steven L. Kunkel

Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection.


PLOS ONE | 2013

Toll like receptor 3 plays a critical role in the progression and severity of acetaminophen-induced hepatotoxicity.

Karen A. Cavassani; Ana Paula Moreira; David M. Habiel; Toshihiro Ito; Ana Lucia Coelho; Ronald M. Allen; Bin Hu; Janna Raphelson; William F. Carson; Matthew Schaller; Nicholas W. Lukacs; M. Bishr Omary; Cory M. Hogaboam; Steven L. Kunkel

Toll-like receptor (TLR) activation has been implicated in acetaminophen (APAP)-induced hepatotoxicity. Herein, we hypothesize that TLR3 activation significantly contributed to APAP-induced liver injury. In fasted wildtype (WT) mice, APAP caused significant cellular necrosis, edema, and inflammation in the liver, and the de novo expression and activation of TLR3 was found to be necessary for APAP-induced liver failure. Specifically, liver tissues from similarly fasted TLR3-deficient (tlr3−/−) mice exhibited significantly less histological and biochemical evidence of injury after APAP challenge. Similar protective effects were observed in WT mice in which TLR3 was targeted through immunoneutralization at 3 h post-APAP challenge. Among three important death ligands (i.e. TNFα, TRAIL, and FASL) known to promote hepatocyte death after APAP challenge, TNFα was the only ligand that was significantly reduced in APAP-challenged tlr3−/− mice compared with APAP-challenged WT controls. In vivo studies demonstrated that TLR3 activation contributed to TNFα production in the liver presumably via F4/80+ and CD11c+ immune cells. In vitro studies indicated that there was cooperation between TNFα and TLR3 in the activation of JNK signaling in isolated and cultured liver epithelial cells (i.e. nMuLi). Moreover, TLR3 activation enhanced the expression of phosphorylated JNK in APAP injured livers. Thus, the current study demonstrates that TLR3 activation contributes to APAP-induced hepatotoxicity.


PLOS Pathogens | 2015

Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection

Danielle Kroetz; Ronald M. Allen; Matthew Schaller; Cleyton Cavallaro; Toshihiro Ito; Steven L. Kunkel

Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2 LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the lungs. Finally, Setdb2 expression by Mϕ suppressed IL-2, IL-10, and IFN-γ production by CD4+ T cells in vitro, as well as proliferation in IAV-infected lungs. Collectively, these findings identify Setdb2 as a novel regulator of the immune system in acute respiratory viral infection.


Shock | 2012

STAT3-mediated IL-17 production by postseptic T cells exacerbates viral immunopathology of the lung.

Sumanta Mukherjee; Ronald M. Allen; Nicholas W. Lukacs; Steven L. Kunkel; William F. Carson

ABSTRACT Survivors of severe sepsis exhibit increased morbidity and mortality in response to secondary infections. Although bacterial secondary infections have been widely studied, there remains a paucity of data concerning viral infections after sepsis. In an experimental mouse model of severe sepsis (cecal ligation and puncture [CLP]) followed by respiratory syncytial virus (RSV) infection, exacerbated immunopathology was observed in the lungs of CLP mice compared with RSV-infected sham surgery mice. This virus-associated immunopathology was evidenced by increased mucus production in the lungs of RSV-infected CLP mice and correlated with increased IL-17 production in the lungs. Respiratory syncytial virus–infected CLP mice exhibited increased levels of TH2 cytokines and reduced interferon &ggr; in the lungs and lymph nodes compared with RSV-infected sham mice. In addition, CD4 T cells from CLP mice produced increased IL-17 in vitro irrespective of the presence of exogenous cytokines or blocking antibodies. This increased IL-17 production correlated with increased STAT3 transcription factor binding to the IL-17 promoter in CD4 T cells from CLP mice. Furthermore, in vivo neutralization of IL-17 before RSV infection led to a significant reduction in virus-induced mucus production and TH2 cytokines. Taken together, these data provide evidence that postseptic CD4+ T cells are primed toward IL-17 production via increased STAT3-mediated gene transcription, which may contribute to the immunopathology of a secondary viral infection.


Thrombosis and Haemostasis | 2015

Divergent effects of Tlr9 deletion in experimental late venous thrombosis resolution and vein wall injury

Nicholas A. Dewyer; Osama M. El-Sayed; Catherine E. Luke; Megan Elfline; Nicolai Kittan; Ronald M. Allen; Adriana Laser; Carson Oostra; Anthony J. Comerota; Cory M. Hogaboam; Steven L. Kunkel; Peter K. Henke

Deep-vein thrombosis (DVT) resolves via a sterile inflammatory response. Defining the inflammatory response of DVT may allow for new therapies that do not involve anticoagulation. Previously, we have shown that Toll-like receptor 9 (Tlr9) gene deleted mice had impaired venous thrombosis (VT) resolution. Here, we further characterise the role of Tlr9 signalling and sterile inflammation in chronic VT and vein wall responses. First, we found a human precedent exists with Tlr9+ cells present in chronic post thrombotic intraluminal tissue. Second, in a stasis VT mouse model, endogenous danger signal mediators of uric acid, HMGB-1, and neutrophil extracellular traps marker of citrullinated histone-3 (and extracellular DNA) were greater in Tlr9-/- thrombi as compared with wild-type (WT), corresponding with larger VT at 8 and 21 days. Fewer M1 type (CCR2+) monocyte/macrophages (MØ) were present in Tlr9-/- thrombi than WT controls at 8 days, suggesting an impaired inflammatory cell influx. Using bone marrow-derived monocyte (BMMØ) cell culture, we found decreased fibrinolytic gene expression with exposure to several endogenous danger signals. Next, adoptive transfer of cultured Tlr9+/+ BMMØ to Tlr9-/- mice normalised VT resolution at 8 days. Lastly, although the VT size was larger at 21 days in Tlr9-/- mice and correlated with decreased endothelial antigen markers, no difference in fibrosis was found. These data suggest that Tlr9 signalling in MØ is critical for later VT resolution, is associated with necrosis clearance, but does not affect later vein wall fibrosis. These findings provide insight into the Tlr9 MØ mechanisms of sterile inflammation in this disease process.


Frontiers in Immunology | 2017

Notch regulates macrophage-mediated inflammation in diabetic wound healing

Andrew Kimball; Amrita Joshi; Anna E. Boniakowski; Matthew Schaller; Jooho Chung; Ronald M. Allen; Jennifer Bermick; William F. Carson; Peter K. Henke; Ivan Maillard; Steve Kunkel; Katherine Gallagher

Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAMLfloxedLyz2Cre+) demonstrated delayed early healing (days 1–3) and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D), Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAMLfloxedLyz2Cre+ on a high-fat diet), improved wound healing was seen at late time points (days 6–7). These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

Collaboration


Dive into the Ronald M. Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cory M. Hogaboam

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge