Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald P. Gaykema is active.

Publication


Featured researches published by Ronald P. Gaykema.


Physiology & Behavior | 2006

Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium.

Mark Lyte; Wang Li; Noel Opitz; Ronald P. Gaykema; Lisa E. Goehler

Symptoms of anxiety frequently occur concomitant to the development and persistence of inflammatory bowel disease (IBD) in patients. In the present study, we utilized an animal model of IBD, infection with Citrobacter rodentium, to determine whether the infection per se can drive anxiety-like behavior. Nine-week-old CF-1 male mice were challenged orally with either saline or C. rodentium. Early in the infective process (7-8 h later), mice were tested on a hole-board open field apparatus for anxiety-like behavior measurement. Immediately following behavioral testing, plasma samples were obtained for immune cytokine analysis and colons were excised for histological analysis. In additional animals, vagal ganglia were removed and processed for c-Fos protein detection. Challenge with C. rodentium significantly increased anxiety-like behavior as evidenced by avoidance of the center area and increased risk assessment behavior. Plasma levels of the cytokines IFN-gamma, TNF-alpha and IL-12 were not different. However vagal sensory ganglia from C. rodentium-treated animals evinced significantly more c-Fos protein-positive neurons, consistent with vagal afferent transmission of C. rodentium-related signals from gut to brain. Histological examination of the colon indicated a lack of overt inflammation at the 8 h post-challenge time point, indicating that the differences in behavior were unlikely to follow from inflammation-related stress. The results of the present study demonstrate that infection with C. rodentium can induce anxiety-like symptoms that are likely mediated via vagal sensory neurons.


Brain Behavior and Immunity | 2004

Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry

Ronald P. Gaykema; Lisa E. Goehler; Mark Lyte

Infections with bacterial pathogens can induce increased anxiety-like behaviors in rodents without otherwise noticeable behavioral or physiological symptoms of sickness, as shown with the food-borne pathogen Campylobacter jejuni. This observation implicates the ability of the brain to sense, and respond to, such an infection. We tested our hypothesis that intestinal infection with the gram-negative bacterium C. jejuni leads to activation of certain brain regions that process gastro-intestinal sensory information. The induction of c-Fos protein as a marker for neuronal activation was assessed in the brains of mice inoculated orally with live C. jejuni, as compared to saline-treated controls. Upon colonization of the intestines, C. jejuni activated visceral sensory nuclei in the brainstem (the nucleus of the solitary tract and the lateral parabrachial nucleus) both one and two days after the oral challenge. In addition, increased c-Fos expression occurred in the hypothalamic paraventricular nucleus on the second day. This neural response occurred in the absence of measurable systemic immune activation, as serum levels of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were undetectable and/or unchanged. These findings support the notion that information about infection with C. jejuni in the gut is indeed relayed to the visceral sensory structures in the brain. The brain responses observed could contribute to changes in behavior observed after infection.


Nature Neuroscience | 2016

Genetically targeted magnetic control of the nervous system

Michael A. Wheeler; Cody J. Smith; Matteo Ottolini; Bryan S. Barker; Aarti M. Purohit; Ryan M. Grippo; Ronald P. Gaykema; Anthony J. Spano; Mark P Beenhakker; Sarah Kucenas; Manoj K. Patel; Christopher D. Deppmann; Ali D. Güler

Optogenetic and chemogenetic actuators are critical for deconstructing the neural correlates of behavior. However, these tools have several limitations, including invasive modes of stimulation or slow on/off kinetics. We have overcome these disadvantages by synthesizing a single-component, magnetically sensitive actuator, “Magneto,” comprising the cation channel TRPV4 fused to the paramagnetic protein ferritin. We validated noninvasive magnetic control over neuronal activity by demonstrating remote stimulation of cells using in vitro calcium imaging assays, electrophysiological recordings in brain slices, in vivo electrophysiological recordings in the brains of freely moving mice, and behavioral outputs in zebrafish and mice. As proof of concept, we used Magneto to delineate a causal role of striatal dopamine receptor 1 neurons in mediating reward behavior in mice. Together our results present Magneto as an actuator capable of remotely controlling circuits associated with complex animal behaviors.


Brain Research | 2007

Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdala, and paraventricular nucleus of the hypothalamus: Evidence for parallel viscerosensory pathways in the rat brain

Ronald P. Gaykema; Chiao-Chi Chen; Lisa E. Goehler

Immune-responsive neurons in the brainstem, primarily in the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM), contribute to a significant drive on forebrain nuclei responsible for brain-mediated host defense responses. The current study investigated the relative contribution of brainstem-derived ascending pathways to forebrain immune-responsive nuclei in the rat by means of retrograde tract tracing and c-Fos immunohistochemistry. Fluorogold was iontophoresed into the bed nucleus of stria terminalis (BST), central nucleus of the amygdala (CEA), paraventricular nucleus of the hypothalamus (PVN), and the pontine lateral parabrachial nucleus (PBL; an important component of ascending viscerosensensory pathways) followed 2 weeks later by intraperitoneal injection of lipopolysaccharide (LPS, 0.1 mg/kg) or saline. The NTS and VLM provide immune-responsive input to all four regions, via direct, predominantly catecholaminergic, projections to the PVN, the lateral BST, and the CEA, and mostly non-catecholaminergic projections to the PBL. The PBL provides a major LPS-activated input to the BST and CEA. The pattern of LPS-activated catecholaminergic projections from the VLM and NTS to the forebrain is characterized by a strong predominance of VLM input to the PVN, whereas the NTS provides a greater contribution to the BST. These findings indicate that direct and indirect pathways originate in the caudal brainstem that propagate immune-related information from the periphery with multiple levels of processing en route to the forebrain nuclei, which may allow for integration of brain responses to infection.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Pathogen-induced heart rate changes associated with cholinergic nervous system activation

Karen D. Fairchild; Varadamurthy Srinivasan; J. Randall Moorman; Ronald P. Gaykema; Lisa E. Goehler

The autonomic nervous system plays a central role in regulation of host defense and in physiological responses to sepsis, including changes in heart rate and heart rate variability. The cholinergic anti-inflammatory response, whereby infection triggers vagal efferent signals that dampen production of proinflammatory cytokines, would be predicted to result in increased vagal signaling to the heart and increased heart rate variability. In fact, decreased heart rate variability is widely described in humans with sepsis. Our studies elucidate this apparent paradox by showing that mice injected with pathogens demonstrate transient bradyarrhythmias of vagal origin in a background of decreased heart rate variability (HRV). Intraperitoneal injection of a large inoculum of Gram-positive or Gram-negative bacteria or Candida albicans rapidly induced bradyarrhythmias of sinus and AV nodal block, characteristic of cardiac vagal firing and dramatically increased short-term HRV. These pathogen-induced bradycardias were immediately terminated by atropine, an antagonist of muscarinic cholinergic receptors, demonstrating the role of vagal efferent signaling in this response. Vagal afferent signaling following pathogen injection was demonstrated by intense nuclear c-Fos activity in neurons of the vagal sensory ganglia and brain stem. Surprisingly, pathogen-induced bradycardia demonstrated rapid and prolonged desensitization and did not recur on repeat injection of the same organism 3 h or 3 days after the initial exposure. After recovery from the initial bradycardia, depressed heart rate variability developed in some mice and was correlated with elevated plasma cytokine levels and mortality. Our findings of decreased HRV and transient heart rate decelerations in infected mice are similar to heart rate changes described by our group in preterm neonates with sepsis. Pathogen sensing and signaling via the vagus nerve, and the desensitization of this response, may account for periods of both increased and decreased heart rate variability in sepsis.


Brain Behavior and Immunity | 2009

Lipopolysaccharide challenge-induced suppression of Fos in hypothalamic orexin neurons: their potential role in sickness behavior

Ronald P. Gaykema; Lisa E. Goehler

Orexin neurons in the lateral hypothalamus constitute a critical component in regulation of waking, feeding, and reward-related behaviors. In this study we examined the effects of lipopolysaccharide (LPS) challenge on Fos expression in orexin neurons in rats, to determine changes during sickness in two different behavioral contexts. One cohort of rats was treated with saline or LPS during the daytime, and then tested on an elevated plus maze (EPM) or left in their home cage until sacrifice. Another cohort received LPS or saline shortly before dark onset and was sacrificed 90min into the dark period. The brains were double-stained for Fos and orexin-A immunoreactivity (both cohorts) and for Fos and histidine decarboxylase (dark period cohort). Orexin neurons were strongly activated in context of exploratory behavior (double-labeled for Fos in both medial and lateral portions). LPS challenge prior to maze exposure diminished this activation, most notably among the lateral orexin neurons. In home cage controls, LPS challenge lead to increased Fos expression, most notably in the medial orexin neurons, when compared to saline-injected home cage controls that show little or no Fos during the daytime. In the dark period, Fos expression in both orexin and histaminergic neurons was abundant, which LPS challenge strongly suppressed. These findings are consistent with the hypothesis that the orexin neurons, in conjunction with the histaminergic system, represent a potential target of the neurocircuitry that drives sickness behavior due to peripheral inflammation, likely through functional inhibition of these hypothalamic cell groups.


Neuroscience | 2008

Lipopolysaccharide suppresses activation of the tuberomammillary histaminergic system concomitant with behavior: a novel target of immune-sensory pathways.

Ronald P. Gaykema; Su-Mi Park; Christopher R. McKibbin; Lisa E. Goehler

Infection and inflammation strongly inhibit a variety of behaviors, including exploration, social interaction, and food intake. The mechanisms that underlie sickness behavior remain elusive, but appear to involve fatigue and a state of hypo-arousal. Because histaminergic neurons in the ventral tuberomammillary nucleus of the hypothalamus (VTM) play a crucial role in the mediation of alertness and behavioral arousal, we investigated whether the histaminergic system represents a target for immune activation and, if so, whether modulation by ascending medullary immune-sensitive projections represents a possible mechanism. Rats were injected intraperitoneally with either the pro-inflammatory stimulus lipopolysaccharide (LPS) or saline, and exposed to one of various behavioral tests that would induce motivated behavior (exploration, play behavior, social interaction, sweetened milk consumption). Upon kill, brains were processed for c-Fos and histidine decarboxylase immunoreactivity. LPS treatment reduced behavioral activity and blocked behavioral test-associated c-Fos induction in histaminergic neurons of the VTM. These effects of LPS were prevented by prior inactivation of the caudal medullary dorsal vagal complex (DVC) with a local anesthetic. To determine whether LPS-responsive brainstem projection neurons might provide a link from the DVC to the VTM, the tracer Fluorogold was iontophoresed into the VTM a week prior to experiment. Retrogradely labeled neurons that expressed c-Fos in response to LPS treatment included catecholaminergic neurons within the nucleus of the solitary tract and ventrolateral medulla. These findings support the hypothesis that the histaminergic system represents an important component in the neurocircuitry relevant for sickness behavior that is linked to ascending pathways originating in the lower brainstem.


Autonomic Neuroscience: Basic and Clinical | 2007

Enhanced neuronal activation in central autonomic network nuclei in aged mice following acute peripheral immune challenge

Ronald P. Gaykema; Madhu K. Balachandran; Jonathan P. Godbout; Rodney W. Johnson; Lisa E. Goehler

Infection is associated with activation in central autonomic nuclei involved in mediating coordinated host defense responses. Aged mice showed exaggerated sickness behavior following peripheral injection of pro-inflammatory bacterial lipopolysaccharide (LPS), but is unknown whether central autonomic network responses are concomitantly increased. To assess whether aged mice exhibit enhanced neural response to LPS, we compared neural responses using c-Fos immunohistochemistry in aged BALB/c mice (22-24 months) with those of young adult peers (3-6 months). Intraperitoneal LPS challenge induced robust expression of c-Fos protein in central autonomic regions, including catecholaminergic neurons in the pons and brainstem, as well as in barrier-associated areas including the circumventricular organs. The numbers of c-Fos positive neurons were significantly greater in the aged compared to the young adult mice. These findings show age-associated enhancement of response to inflammation in the blood-brain chemosensory interfaces as well the central autonomic pathways involved in the elaboration of sickness symptoms, which may contribute to exaggerated sickness and poorer outcomes of infectious disease in the elderly.


Journal of Clinical Investigation | 2017

Activation of murine pre-proglucagon–producing neurons reduces food intake and body weight

Ronald P. Gaykema; Brandon A. Newmyer; Matteo Ottolini; Vidisha Raje; Daniel M. Warthen; Philip S. Lambeth; Maria Niccum; Ting Yao; Yiru Huang; Ira G. Schulman; Thurl E. Harris; Manoj K. Patel; Kevin W. Williams; Michael M. Scott

Peptides derived from pre-proglucagon (GCG peptides) act in both the periphery and the CNS to change food intake, glucose homeostasis, and metabolic rate while playing a role in anxiety behaviors and physiological responses to stress. Although the actions of GCG peptides produced in the gut and pancreas are well described, the role of glutamatergic GGC peptide–secreting hindbrain neurons in regulating metabolic homeostasis has not been investigated. Here, we have shown that chemogenetic stimulation of GCG-producing neurons reduces metabolic rate and food intake in fed and fasted states and suppresses glucose production without an effect on glucose uptake. Stimulation of GCG neurons had no effect on corticosterone secretion, body weight, or conditioned taste aversion. In the diet-induced obese state, the effects of GCG neuronal stimulation on gluconeogenesis were lost, while the food intake–lowering effects remained, resulting in reductions in body weight and adiposity. Our work suggests that GCG peptide–expressing neurons can alter feeding, metabolic rate, and glucose production independent of their effects on hypothalamic pituitary-adrenal (HPA) axis activation, aversive conditioning, or insulin secretion. We conclude that GCG neurons likely stimulate separate populations of downstream cells to produce a change in food intake and glucose homeostasis and that these effects depend on the metabolic state of the animal.


Frontiers in Behavioral Neuroscience | 2016

Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake

Daniel M. Warthen; Philip S. Lambeth; Matteo Ottolini; Yingtang Shi; Bryan S. Barker; Ronald P. Gaykema; Brandon A. Newmyer; Jonathan Joy-Gaba; Yu Ohmura; Edward Perez-Reyes; Ali D. Güler; Manoj K. Patel; Michael M. Scott

The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.

Collaboration


Dive into the Ronald P. Gaykema's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Lyte

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Noel Opitz

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matteo Ottolini

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar

Bryan S. Barker

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Su-Mi Park

University of Virginia

View shared research outputs
Researchain Logo
Decentralizing Knowledge