Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald R. de Krijger is active.

Publication


Featured researches published by Ronald R. de Krijger.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations

Katherine A. Janeway; Su Young Kim; Maya Lodish; Vânia Nosé; Pierre Rustin; José Gaal; Patricia L M Dahia; Bernadette Liegl; Evan R. Ball; Margarita Raygada; Angela H. Lai; Lorna Kelly; Jason L. Hornick; S. George; Michael P. LaQuaglia; Alberto S. Pappo; Jonathan Trent; Margaret von Mehren; Maureen J. O'Sullivan; Ronald R. de Krijger; Winand N. M. Dinjens; George D. Demetri; Cristina R. Antonescu; Jonathan A. Fletcher; Lee J. Helman; Constantine A. Stratakisc

Carney-Stratakis syndrome, an inherited condition predisposing affected individuals to gastrointestinal stromal tumor (GIST) and paraganglioma, is caused by germline mutations in succinate dehydrogenase (SDH) subunits B, C, or D, leading to dysfunction of complex II of the electron transport chain. We evaluated the role of defective cellular respiration in sporadic GIST lacking mutations in KIT or PDGFRA (WT). Thirty-four patients with WT GIST without a personal or family history of paraganglioma were tested for SDH germline mutations. WT GISTs lacking demonstrable SDH genetic inactivation were evaluated for SDHB expression by immunohistochemistry and Western blotting and for complex II activity. For comparison, SDHB expression was also determined in KIT mutant and neurofibromatosis-1–associated GIST, and complex II activity was also measured in SDH-deficient paraganglioma and KIT mutant GIST; 4 of 34 patients (12%) with WT GIST without a personal or family history of paraganglioma had germline mutations in SDHB or SDHC. WT GISTs lacking somatic mutations or deletions in SDH subunits had either complete loss of or substantial reduction in SDHB protein expression, whereas most KIT mutant GISTs had strong SDHB expression. Complex II activity was substantially decreased in WT GISTs. WT GISTs, particularly those in younger patients, have defects in SDH mitochondrial complex II, and in a subset of these patients, GIST seems to arise from germline-inactivating SDH mutations. Testing for germline mutations in SDH is recommended in patients with WT GIST. These findings highlight a potential central role of SDH dysregulation in WT GIST oncogenesis.


Lancet Oncology | 2009

An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis.

Francien H. van Nederveen; José Gaal; Judith Favier; Esther Korpershoek; Rogier A. Oldenburg; Elly M C A de Bruyn; Hein Sleddens; Pieter Derkx; Julie Rivière; Hilde Dannenberg; Bart-Jeroen Petri; Paul Komminoth; Karel Pacak; Wim C. J. Hop; Patrick J. Pollard; Massimo Mannelli; Jean-Pierre Bayley; Aurel Perren; Stephan Niemann; A.A.J. Verhofstad; Adriaan P. de Bruïne; Eamonn R. Maher; Frédérique Tissier; Tchao Meatchi; Cécile Badoual; Jérôme Bertherat; Laurence Amar; Despoina Alataki; Eric Van Marck; Francesco Ferraù

BACKGROUND Phaeochromocytomas and paragangliomas are neuro-endocrine tumours that occur sporadically and in several hereditary tumour syndromes, including the phaeochromocytoma-paraganglioma syndrome. This syndrome is caused by germline mutations in succinate dehydrogenase B (SDHB), C (SDHC), or D (SDHD) genes. Clinically, the phaeochromocytoma-paraganglioma syndrome is often unrecognised, although 10-30% of apparently sporadic phaeochromocytomas and paragangliomas harbour germline SDH-gene mutations. Despite these figures, the screening of phaeochromocytomas and paragangliomas for mutations in the SDH genes to detect phaeochromocytoma-paraganglioma syndrome is rarely done because of time and financial constraints. We investigated whether SDHB immunohistochemistry could effectively discriminate between SDH-related and non-SDH-related phaeochromocytomas and paragangliomas in large retrospective and prospective tumour series. METHODS Immunohistochemistry for SDHB was done on 220 tumours. Two retrospective series of 175 phaeochromocytomas and paragangliomas with known germline mutation status for phaeochromocytoma-susceptibility or paraganglioma-susceptibility genes were investigated. Additionally, a prospective series of 45 phaeochromocytomas and paragangliomas was investigated for SDHB immunostaining followed by SDHB, SDHC, and SDHD mutation testing. FINDINGS SDHB protein expression was absent in all 102 phaeochromocytomas and paragangliomas with an SDHB, SDHC, or SDHD mutation, but was present in all 65 paraganglionic tumours related to multiple endocrine neoplasia type 2, von Hippel-Lindau disease, and neurofibromatosis type 1. 47 (89%) of the 53 phaeochromocytomas and paragangliomas with no syndromic germline mutation showed SDHB expression. The sensitivity and specificity of the SDHB immunohistochemistry to detect the presence of an SDH mutation in the prospective series were 100% (95% CI 87-100) and 84% (60-97), respectively. INTERPRETATION Phaeochromocytoma-paraganglioma syndrome can be diagnosed reliably by an immunohistochemical procedure. SDHB, SDHC, and SDHD germline mutation testing is indicated only in patients with SDHB-negative tumours. SDHB immunohistochemistry on phaeochromocytomas and paragangliomas could improve the diagnosis of phaeochromocytoma-paraganglioma syndrome. FUNDING The Netherlands Organisation for Scientific Research, Dutch Cancer Society, Vanderes Foundation, Association pour la Recherche contre le Cancer, Institut National de la Santé et de la Recherche Médicale, and a PHRC grant COMETE 3 for the COMETE network.


Nature Genetics | 2014

Integrated genomic characterization of adrenocortical carcinoma

Guillaume Assié; Eric Letouzé; Martin Fassnacht; Anne Jouinot; Windy Luscap; Olivia Barreau; Hanin Omeiri; S. Rodriguez; Karine Perlemoine; F. René-Corail; Nabila Elarouci; Silviu Sbiera; Matthias Kroiss; Bruno Allolio; Jens Waldmann; Marcus Quinkler; Massimo Mannelli; Franco Mantero; Thomas G. Papathomas; Ronald R. de Krijger; Antoine Tabarin; V. Kerlan; Eric Baudin; Frédérique Tissier; Bertrand Dousset; Lionel Groussin; Laurence Amar; Eric Clauser; Xavier Bertagna; Bruno Ragazzon

Adrenocortical carcinomas (ACCs) are aggressive cancers originating in the cortex of the adrenal gland. Despite overall poor prognosis, ACC outcome is heterogeneous. We performed exome sequencing and SNP array analysis of 45 ACCs and identified recurrent alterations in known driver genes (CTNNB1, TP53, CDKN2A, RB1 and MEN1) and in genes not previously reported in ACC (ZNRF3, DAXX, TERT and MED12), which we validated in an independent cohort of 77 ACCs. ZNRF3, encoding a cell surface E3 ubiquitin ligase, was the most frequently altered gene (21%) and is a potential new tumor suppressor gene related to the β-catenin pathway. Our integrated genomic analyses further identified two distinct molecular subgroups with opposite outcome. The C1A group of ACCs with poor outcome displayed numerous mutations and DNA methylation alterations, whereas the C1B group of ACCs with good prognosis displayed specific deregulation of two microRNA clusters. Thus, aggressive and indolent ACCs correspond to two distinct molecular entities driven by different oncogenic alterations.


The Journal of Pathology | 2004

Pathobiological implications of the expression of markers of testicular carcinoma in situ by fetal germ cells

Friedemann Honecker; Hans Stoop; Ronald R. de Krijger; Yun-Fai Chris Lau; Carsten Bokemeyer; Leendert Looijenga

Several proteins, such as the placental/germ cell alkaline phosphatases (PLAPs), the stem cell factor receptor c‐KIT, and the transcriptional regulator and marker of pluripotency OCT3/4, have been found in both normal immature and malignant germ cells, known as carcinoma in situ/intratubular germ cell neoplasia unclassified (CIS/ITGCNU). In the present study, immunohistochemical methods were used to evaluate the expression of these markers in a series of male gonads from fetuses from the second and third trimesters, and neonates. In addition to these markers, the presence of VASA (a protein specific for the germ cell lineage), TSPY (the testis‐specific protein, Y‐encoded), and the proliferation index (Ki‐67 antigen) was analysed. All these proteins are reported to be present both during spermatogenesis and in CIS/ITGCNU. Positive staining for VASA with varying intensity was found in all germ cells, while TSPY was predominantly located in the prespermatogonial cells at all developmental ages. In contrast, the markers PLAP, c‐KIT, OCT3/4, and Ki‐67 were more frequent at earlier developmental stages and decreased gradually with time, although they could occasionally be detected in germ cells of neonates. These findings are in line with a declining number of gonocytes during fetal development, concomitant with an increase in the number of prespermatogonia. The latter have lost the immature germ cell phenotype. These findings are compatible with the hypothesis that CIS/ITGCNU arises from developmentally arrested germ cells, most likely primordial germ cells/gonocytes, at an early time point during intrauterine development. Copyright


Lancet Oncology | 2010

SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma

Jean-Pierre Bayley; H.P.M. Kunst; Alberto Cascón; M. L. Sampietro; José Gaal; Esther Korpershoek; Adolfo Hinojar-Gutierrez; Henri Timmers; Lies H. Hoefsloot; Mario Hermsen; Carlos Suárez; A. Karim Hussain; Annette H. J. T. Vriends; Frederik J. Hes; Jeroen C. Jansen; Carli M. J. Tops; Eleonora P. M. Corssmit; Peter de Knijff; Jacques W. M. Lenders; C.W.R.J. Cremers; Peter Devilee; Winand N. M. Dinjens; Ronald R. de Krijger; Mercedes Robledo

BACKGROUND Paragangliomas and phaeochromocytomas are neuroendocrine tumours associated frequently with germline mutations of SDHD, SDHC, and SDHB. Previous studies have shown the imprinted SDHAF2 gene to be mutated in a large Dutch kindred with paragangliomas. We aimed to identify SDHAF2 mutation carriers, assess the clinical genetic significance of SDHAF2, and describe the associated clinical phenotype. METHODS We undertook a multicentre study in Spain and The Netherlands in 443 apparently sporadic patients with paragangliomas and phaeochromocytomas who did not have mutations in SDHD, SDHC, or SDHB. We analysed DNA of 315 patients for germline mutations of SDHAF2; a subset (n=200) was investigated for gross gene deletions. DNA from a group of 128 tumours was studied for somatic mutations. We also examined a Spanish family with head and neck paragangliomas with a young age of onset for the presence of SDHAF2 mutations, undertook haplotype analysis in this kindred, and assessed their clinical phenotype. FINDINGS We did not identify any germline or somatic mutations of SDHAF2, and no gross gene deletions were noted in the subset of apparently sporadic patients analysed. Investigation of the Spanish family identified a pathogenic germline DNA mutation of SDHAF2, 232G-->A (Gly78Arg), identical to the Dutch kindred. INTERPRETATION SDHAF2 mutations do not have an important role in phaeochromocytoma and are rare in head and neck paraganglioma. Identification of a second family with the Gly78Arg mutation suggests that this is a crucial residue for the function of SDHAF2. We conclude that SDHAF2 mutation analysis is justified in very young patients with isolated head and neck paraganglioma without mutations in SDHD, SDHC, or SDHB, and in individuals with familial antecedents who are negative for mutations in all other risk genes. FUNDING Dutch Cancer Society, European Union 6th Framework Program, Fondo Investigaciones Sanitarias, Fundación Mutua Madrileña, and Red Temática de Investigación Cooperativa en Cáncer.


Clinical Cancer Research | 2012

MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma.

Nelly Burnichon; Alberto Cascón; Francesca Schiavi; NicolePaes Morales; Iñaki Comino-Méndez; Nasséra Abermil; Lucía Inglada-Pérez; Aguirre A. de Cubas; Laurence Amar; Marta Barontini; Sandra Bernaldo De Quiroś; Jérôome Bertherat; Yves Jean Bignon; Marinus J. Blok; Sara Bobisse; Salud Borrego; Maurizio Castellano; Philippe Chanson; María Dolores Chiara; Eleonora P. M. Corssmit; Mara Giacchè; Ronald R. de Krijger; Tonino Ercolino; Xavier Girerd; Encarna B. Gomez-Garcia; Álvaro Gómez-Graña; Isabelle Guilhem; Frederik J. Hes; Emiliano Honrado; Esther Korpershoek

Purpose: Pheochromocytomas (PCC) and paragangliomas (PGL) are genetically heterogeneous neural crest–derived neoplasms. Recently we identified germline mutations in a new tumor suppressor susceptibility gene, MAX (MYC-associated factor X), which predisposes carriers to PCC. How MAX mutations contribute to PCC/PGL and associated phenotypes remain unclear. This study aimed to examine the prevalence and associated phenotypic features of germline and somatic MAX mutations in PCC/PGL. Design: We sequenced MAX in 1,694 patients with PCC or PGL (without mutations in other major susceptibility genes) from 17 independent referral centers. We screened for large deletions/duplications in 1,535 patients using a multiplex PCR-based method. Somatic mutations were searched for in tumors from an additional 245 patients. The frequency and type of MAX mutation was assessed overall and by clinical characteristics. Results: Sixteen MAX pathogenic mutations were identified in 23 index patients. All had adrenal tumors, including 13 bilateral or multiple PCCs within the same gland (P < 0.001), 15.8% developed additional tumors at thoracoabdominal sites, and 37% had familial antecedents. Age at diagnosis was lower (P = 0.001) in MAX mutation carriers compared with nonmutated cases. Two patients (10.5%) developed metastatic disease. A mutation affecting MAX was found in five tumors, four of them confirmed as somatic (1.65%). MAX tumors were characterized by substantial increases in normetanephrine, associated with normal or minor increases in metanephrine. Conclusions: Germline mutations in MAX are responsible for 1.12% of PCC/PGL in patients without evidence of other known mutations and should be considered in the genetic work-up of these patients. Clin Cancer Res; 18(10); 2828–37. ©2012 AACR.


The Journal of Clinical Endocrinology and Metabolism | 2011

SDHA Immunohistochemistry Detects Germline SDHA Gene Mutations in Apparently Sporadic Paragangliomas and Pheochromocytomas

Esther Korpershoek; Judith Favier; José Gaal; Nelly Burnichon; Bram van Gessel; Lindsey Oudijk; Cécile Badoual; Noémie Gadessaud; Annabelle Venisse; Jean-Pierre Bayley; Marieke F. van Dooren; Wouter W. de Herder; Frédérique Tissier; Pierre-François Plouin; Francien H. van Nederveen; Winand N. M. Dinjens; Anne-Paule Gimenez-Roqueplo; Ronald R. de Krijger

CONTEXT Pheochromocytoma-paraganglioma syndrome is caused by mutations in SDHB, SDHC, and SDHD, encoding subunits of succinate dehydrogenase (SDH), and in SDHAF2, required for flavination of SDHA. A recent report described a patient with an abdominal paraganglioma, immunohistochemically negative for SDHA, and identified a causal germline mutation in SDHA. OBJECTIVE In this study, we evaluated the significance of SDHA immunohistochemistry in the identification of new patients with SDHA mutations. SETTING This study was performed in the Erasmus Medical Center in Rotterdam (The Netherlands) and the Université Paris Descartes in Paris (France). METHODS We investigated 316 pheochromocytomas and paragangliomas for SDHA expression. Sequence analysis of SDHA was performed on all tumors that were immunohistochemically negative for SDHA and on a subset of tumors immunohistochemically positive for SDHA. RESULTS Six tumors were immunohistochemically negative for SDHA. Four tumors from Dutch patients showed a germline c.91C → T SDHA gene mutation (p.Arg31X). Another tumor (from France) carried a germline SDHA missense mutation c.1753C → T (p.Arg585Trp). Loss of the wild-type SDHA allele was confirmed by loss of heterozygosity analysis. Sequence analysis of 35 SDHA immunohistochemically positive tumors did not reveal additional SDHA mutations. CONCLUSIONS Our results demonstrate that SDHA immunohistochemistry on paraffin-embedded tumors can reveal the presence of SDHA germline mutations and allowed the identification of SDHA-related tumors in at least 3% of patients affected by apparently sporadic (para)sympathetic paragangliomas and pheochromocytomas.


Cancer Research | 2005

Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis.

Xiaoqian Ma; Angelique Ziel-van der Made; Binha Autar; Hetty A. G. M. van der Korput; Marcel Vermeij; Petra van Duijn; Kitty B.J.M. Cleutjens; Ronald R. de Krijger; Paul Krimpenfort; Anton Berns; Theo H. van der Kwast; Jan Trapman

The PTEN tumor suppressor gene is frequently inactivated in human tumors, including prostate cancer. Based on the Cre/loxP system, we generated a novel mouse prostate cancer model by targeted inactivation of the Pten gene. In this model, Cre recombinase was expressed under the control of the prostate-specific antigen (PSA) promoter. Conditional biallelic and monoallelic Pten knock-out mice were viable and Pten recombination was prostate-specific. Mouse cohorts were systematically characterized at 4 to 5, 7 to 9, and 10 to 14 months. A slightly increased proliferation rate of epithelial cells was observed in all prostate lobes of monoallelic Pten knock-out mice (PSA-Cre;Pten-loxP/+), but minimal pathologic changes were detected. All homozygous knock-out mice (PSA-Cre;Pten-loxP/loxP) showed an increased size of the luminal epithelial cells, large areas of hyperplasia, focal prostate intraepithelial neoplasia lesions and an increased prostate weight at 4 to 5 months. More extensive prostate intraepithelial neoplasia and focal microinvasion occurred at 7 to 9 months; invasive prostate carcinoma was detected in all male PSA-Cre;Pten-loxP/loxP mice at 10 to 14 months. At 15 to 16 months, a rare lymph node metastasis was found. In hyperplastic cells and in tumor cells, the expression of phospho-AKT was up-regulated. In hyperplastic and tumor cells, expression of luminal epithelial cell cytokeratins was up-regulated; tumor cells were negative for basal epithelial cell cytokeratins. Androgen receptor expression remained detectable at all stages of tumor development. The up-regulation of phospho-AKT correlated with an increased proliferation rate of the epithelial cells, but not with a reduced apoptosis.


Blood | 2009

Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation

Tiago C. Luis; Floor Weerkamp; Brigitta A.E. Naber; Miranda R. M. Baert; Edwin F. E. de Haas; Tatjana Nikolic; Sjanneke Heuvelmans; Ronald R. de Krijger; Jacques J.M. van Dongen; Frank J. T. Staal

Canonical Wnt signaling has been implicated in various aspects of hematopoiesis. Its role is controversial due to different outcomes between various inducible Wnt-signaling loss-of-function models and also compared with gain-of-function systems. We therefore studied a mouse deficient for a Wnt gene that seemed to play a nonredundant role in hematopoiesis. Mice lacking Wnt3a die prenatally around embryonic day (E) 12.5, allowing fetal hematopoiesis to be studied using in vitro assays and transplantation into irradiated recipient mice. Here we show that Wnt3a deficiency leads to a reduction in the numbers of hematopoietic stem cells (HSCs) and progenitor cells in the fetal liver (FL) and to severely reduced reconstitution capacity as measured in secondary transplantation assays. This deficiency is irreversible and cannot be restored by transplantation into Wnt3a competent mice. The impaired long-term repopulation capacity of Wnt3a(-/-) HSCs could not be explained by altered cell cycle or survival of primitive progenitors. Moreover, Wnt3a deficiency affected myeloid but not B-lymphoid development at the progenitor level, and affected immature thymocyte differentiation. Our results show that Wnt3a signaling not only provides proliferative stimuli, such as for immature thymocytes, but also regulates cell fate decisions of HSC during hematopoiesis.


European Journal of Nuclear Medicine and Molecular Imaging | 2012

EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma

David Taïeb; Henri Timmers; Elif Hindié; Benjamin Guillet; Hartmut P. H. Neumann; Martin K. Walz; Giuseppe Opocher; Wouter W. de Herder; Carsten Christof Boedeker; Ronald R. de Krijger; Arturo Chiti; Adil Al-Nahhas; Karel Pacak; Domenico Rubello

PurposeRadionuclide imaging of phaeochromocytomas (PCCs) and paragangliomas (PGLs) involves various functional imaging techniques and approaches for accurate diagnosis, staging and tumour characterization. The purpose of the present guidelines is to assist nuclear medicine practitioners in performing, interpreting and reporting the results of the currently available SPECT and PET imaging approaches. These guidelines are intended to present information specifically adapted to European practice.MethodsGuidelines from related fields, issued by the European Association of Nuclear Medicine and the Society of Nuclear Medicine, were taken into consideration and are partially integrated within this text. The same was applied to the relevant literature, and the final result was discussed with leading experts involved in the management of patients with PCC/PGL. The information provided should be viewed in the context of local conditions, laws and regulations.ConclusionAlthough several radionuclide imaging modalities are considered herein, considerable focus is given to PET imaging which offers high sensitivity targeted molecular imaging approaches.

Collaboration


Dive into the Ronald R. de Krijger's collaboration.

Top Co-Authors

Avatar

Esther Korpershoek

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Winand N. M. Dinjens

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dick Tibboel

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Wouter W. de Herder

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

José Gaal

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Lindsey Oudijk

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas G. Papathomas

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Hilde Dannenberg

Erasmus University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge