Ronald R. Seese
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronald R. Seese.
The Journal of Neuroscience | 2013
Adrienne L. Andres; Limor Regev; Lucas Phi; Ronald R. Seese; Yuncai Chen; Christine M. Gall; Tallie Z. Baram
The complex effects of stress on learning and memory are mediated, in part, by stress-induced changes in the composition and structure of excitatory synapses. In the hippocampus, the effects of stress involve several factors including glucocorticoids and the stress-released neuropeptide corticotropin-releasing hormone (CRH), which influence the integrity of dendritic spines and the structure and function of the excitatory synapses they carry. CRH, at nanomolar, presumed-stress levels, rapidly abolishes short-term synaptic plasticity and destroys dendritic spines, yet the mechanisms for these effects are not fully understood. Here we tested the hypothesis that glutamate receptor-mediated processes, which shape synaptic structure and function, are engaged by CRH and contribute to spine destabilization. In cultured rat hippocampal neurons, CRH application reduced dendritic spine density in a time- and dose-dependent manner, and this action depended on the CRH receptor type 1. CRH-mediated spine loss required network activity and the activation of NMDA, but not of AMPA receptors; indeed GluR1-containing dendritic spines were resistant to CRH. Downstream of NMDA receptors, the calcium-dependent enzyme, calpain, was recruited, resulting in the breakdown of spine actin-interacting proteins including spectrin. Pharmacological approaches demonstrated that calpain recruitment contributed critically to CRH-induced spine loss. In conclusion, the stress hormone CRH co-opts mechanisms that contribute to the plasticity and integrity of excitatory synapses, leading to selective loss of dendritic spines. This spine loss might function as an adaptive mechanism preventing the consequences of adverse memories associated with severe stress.
The Journal of Neuroscience | 2012
Ronald R. Seese; Alex H. Babayan; Adam M. Katz; Conor D. Cox; Julie C. Lauterborn; Gary Lynch; Christine M. Gall
Stabilization of long-term potentiation (LTP) depends on reorganization of the dendritic spine actin cytoskeleton. The present study tested whether this involves activity-driven effects on the actin-regulatory protein cortactin, and whether such effects are disturbed in the Fmr1 knock-out (KO) model of fragile X syndrome, in which stabilization of both actin filaments and LTP is impaired. LTP induced by theta burst stimulation (TBS) in hippocampal slices from wild-type mice was associated with rapid, broadly distributed, and NMDA receptor-dependent decreases in synapse-associated cortactin. The reduction in cortactin content was blocked by blebbistatin, while basal levels were reduced by nocodazole, indicating that cortactins movements into and away from synapses are regulated by microtubule and actomyosin motors, respectively. These results further suggest that synapse-specific LTP influences cytoskeletal elements at distant connections. The rapid effects of TBS on synaptic cortactin content were absent in Fmr1 KOs as was evidence for activity-driven phosphorylation of the protein or its upstream kinase, ERK1/2. Phosphorylation regulates cortactins interactions with actin, and coprecipitation of the two proteins was reduced in the KOs. We propose that, in the KOs, excessive basal phosphorylation of ERK1/2 disrupts its interactions with cortactin, thereby blocking the latter proteins use of actomyosin transport systems. These impairments are predicted to compromise the response of the subsynaptic cytoskeleton to learning-related afferent activity, both locally and at distant sites.
Neuropsychopharmacology | 2014
Ronald R. Seese; Anna R Maske; Gary Lynch; Christine M. Gall
A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T+ Itpr3tf/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain’s cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory, whereas the remainder did not. Fluorescence deconvolution tomography was used to test whether synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared with C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested whether treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology.
The Journal of Neuroscience | 2013
Ronald R. Seese; Lulu Y. Chen; Conor D. Cox; Daniela Schulz; Alex H. Babayan; William E. Bunney; Fritz A. Henn; Christine M. Gall; Gary Lynch
Multiple lines of evidence suggest that disturbances in excitatory transmission contribute to depression. Whether these defects involve the number, size, or composition of glutamatergic contacts is unclear. This study used recently introduced procedures for fluorescence deconvolution tomography in a well-studied rat model of congenital depression to characterize excitatory synapses in layer I of infralimbic cortex, a region involved in mood disorders, and of primary somatosensory cortex. Three groups were studied: (1) rats bred for learned helplessness (cLH); (2) rats resistant to learned helplessness (cNLH); and (3) control Sprague Dawley rats. In fields within infralimbic cortex, cLH rats had the same numerical density of synapses, immunolabeled for either the postsynaptic density (PSD) marker PSD95 or the presynaptic protein synaptophysin, as controls. However, PSD95 immunolabeling intensities were substantially lower in cLH rats, as were numerical densities of synapse-sized clusters of the AMPA receptor subunit GluA1. Similar but less pronounced differences (comparable numerical densities but reduced immunolabeling intensity for PSD95) were found in the somatosensory cortex. In contrast, non-helpless rats had 25% more PSDs than either cLH or control rats without any increase in synaptophysin-labeled terminal frequency. Compared with controls, both cLH and cNLH rats had fewer GABAergic contacts. These results indicate that congenital tendencies that increase or decrease depression-like behavior differentially affect excitatory synapses.
Neuroscience | 2013
Xiaolin Zhao; Ronald R. Seese; K. Yun; T. Peng; Zhenyuan Wang
There is high comorbidity between stress-related psychiatric disorders and addiction, suggesting they may share one or more common neurobiological mechanisms. Because of its role in both depressive and addictive behaviors, the galanin system is a strong candidate for such a mechanism. In this study, we tested if galanin and its receptors are involved in stress-associated behaviors and drug addiction. Mice were exposed to 21 days of chronic restraint stress (CRS); subsequently, mRNA levels of galanin, galanin receptors (GalRs), the rate-limiting enzymes for the synthesis of monoamines, and monoamine autoreceptors were measured in the nucleus accumbens by a quantitative real-time polymerase chain reaction. Moreover, we tested the effects of this stress on morphine-induced addictive behaviors. We found that CRS induced anxiety and depression-like behaviors, impaired the formation and facilitated the extinction process in morphine-induced conditioned place preference (CPP), and also blocked morphine-induced behavioral sensitization. These behavioral results were accompanied by a CRS-dependent increase in the mRNA expression of galanin, GalR1, tyrosine hydroxylase (TH), tryptophan hydroxylase 2, and 5-HT1B receptor. Interestingly, treatment with a commonly used antidepressant, fluoxetine, normalized the CRS-induced behavioral changes based on reversing the higher expression of galanin and TH while increasing the expression of GalR2 and α2A-adrenceptor. These results indicate that activating the galanin system, with corresponding changes to noradrenergic systems, following chronic stress may modulate stress-associated behaviors and opiate addiction. Our findings suggest that galanin and GalRs are worthy of further exploration as potential therapeutic targets to treat stress-related disorders and drug addiction.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Ronald R. Seese; Kathleen Wang; Yue Qin Yao; Gary Lynch; Christine M. Gall
Significance There are no treatments for congenital intellectual disabilities. Here we show that newly discovered timing rules for maximizing hippocampal long-term potentiation predict training regimens that offset defects in synaptic chemistry and memory in the fragile X mental retardation 1 (Fmr1) KO model of fragile X syndrome. Wild-type mice required far less training to form stable memories when given three training trials separated by 1 hour as opposed to one extended session; shorter or longer intervals were ineffective. The same spaced training protocol rescued memory in Fmr1 KO mice and restored activation of synaptic ERK1/2, a kinase critical for both LTP and learning. These results suggest a readily implementable, neurobiologically based therapeutic strategy for a prevalent form of intellectual disability. Recent studies have shown that short, spaced trains of afferent stimulation produce much greater long-term potentiation (LTP) than that obtained with a single, prolonged stimulation episode. The present studies demonstrate that spaced training regimens, based on these LTP timing rules, facilitate learning in wild-type (WT) mice and can offset learning and synaptic signaling impairments in the fragile X mental retardation 1 (Fmr1) knockout (KO) model of fragile X syndrome. We determined that 5 min of continuous training supports object location memory (OLM) in WT but not Fmr1 KO mice. However, the same amount of training distributed across three short trials, spaced by one hour, produced robust long-term memory in the KOs. At least three training trials were needed to realize the benefit of spacing, and intertrial intervals shorter or longer than 60 min were ineffective. Multiple short training trials also rescued novel object recognition in Fmr1 KOs. The spacing effect was surprisingly potent: just 1 min of OLM training, distributed across three trials, supported robust memory in both genotypes. Spacing also rescued training-induced activation of synaptic ERK1/2 in dorsal hippocampus of Fmr1 KO mice. These results show that a spaced training regimen designed to maximize synaptic potentiation facilitates recognition memory in WT mice and can offset synaptic signaling and memory impairments in a model of congenital intellectual disability.
Legal Medicine | 2013
Shiwei Mao; Gaowen Fu; Ronald R. Seese; Zhenyuan Wang
Estimating the time since death, or postmortem interval (PMI), has been one of the biggest difficulties in modern forensic investigation. This study tests if the concentrations of breakdown products of adenosine triphosphate (ATP) correlate with PMI in multiple organs from rat. Brains, spleens, and kidneys of rats were harvested at different time points in carcasses maintained at 4°C or 20°C. High Performance Liquid Chromatography (HPLC) was used to quantify concentrations of metabolites related to ATP degradation. A K value (Kv=100×(Hx+HxR)/(ATP+ADP+AMP+IMP+HxR+Hx)) was calculated and correlated with PMI for each organ and temperature. The results indicate that the K value is a robust index for the estimation of PMI based on highly significant linear correlations between PMI and concentrations of ATP breakdown products. Compared with other current research methods, the changing tendency of ATP and its degradation products may be potentially a better way for the estimation of PMI in medico-legal practice.
Science & Justice | 2011
Shiwei Mao; Xiuzhen Dong; Feng Fu; Ronald R. Seese; Zhenyuan Wang
The objective of this study was to develop a rapid method for the estimation of postmortem interval (PMI) using electric impedance spectroscopy. Postmortem rat spleens were studied at 10°C, 20°C, and 30°C; The results obtained demonstrated that postmortem interval negatively correlated with the absolute value of Im Z(//) (capacitive reactance component) in electrical impedance. This suggests that electric impedance spectroscopy may be a sensitive tool to determine the postmortem interval.
Neuroscience Letters | 2011
Xiaojie Zhao; Yang Li; Tao Peng; Ronald R. Seese; Zhenyuan Wang
When a consolidated memory is retrieved, it returns to a vulnerable state. To persist it must undergo another process, called memory reconsolidation. It has been demonstrated that disrupting the reconsolidation of a drug-specific memory is a powerful method for intervention in drug addiction. More specifically, previous studies suggested that certain types of stress can successfully disrupt reconsolidation of drug memories. While it is typically used for a single purpose, stress contributes to a myriad of different memory paradigms and processes. These additional effects of stress on unrelated memory processes are often overlooked. In this study, cold water stress was used to assess its effects on drug memory. Rats were trained to acquire methamphetamine (MA) conditioned place preference (CPP) by confining rats to a MA-paired chamber for 10min. The new object recognition task (NOR) was given before and after stress-interrupting reconsolidation of MA-induced memory. Our data demonstrate that stress impairs the consolidation process of NOR memory when it is used to block drug memory reconsolidation, while stress exhibits no effect on acquiring a new memory, suggesting potential strategies of stress for therapeutic invention in drug addiction.
PLOS ONE | 2013
Xiaojie Zhao; Keming Yun; Ronald R. Seese; Zhenyuan Wang
Learning and memory systems are intimately involved in drug addiction. Previous studies suggest that galanin, a neuropeptide that binds G-protein coupled receptors, plays essential roles in the encoding of memory. In the present study, we tested the function of galnon, a galanin receptor 1 and 2 agonist, in reward-associated memory, using conditioned place preference (CPP), a widely used paradigm in drug-associated memory. Either before or following CPP-inducing morphine administration, galnon was injected at four different time points to test the effects of galanin activation on different reward-associated memory processes: 15 min before CPP training (acquisition), immediately after CPP training (consolidation), 15 min before the post-conditioning test (retrieval), and multiple injection after post-tests (reconsolidation and extinction). Galnon enhanced consolidation and extinction processes of morphine-induced CPP memory, but the compound had no effect on acquisition, retrieval, or reconsolidation processes. Our findings demonstrate that a galanin receptor 1 and 2 agonist, galnon, may be used as a viable compound to treat drug addiction by facilitating memory extinction process.