Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald S. Petralia is active.

Publication


Featured researches published by Ronald S. Petralia.


Nature | 2000

Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms

Lu Chen; Dane M. Chetkovich; Ronald S. Petralia; Neal T. Sweeney; Yoshimi Kawasaki; Robert J. Wenthold; David S. Bredt; Roger A. Nicoll

Stargazer, an ataxic and epileptic mutant mouse, lacks functional AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate) receptors on cerebellar granule cells. Stargazin, the mutated protein, interacts with both AMPA receptor subunits and synaptic PDZ proteins, such as PSD-95. The interaction of stargazin with AMPA receptor subunits is essential for delivering functional receptors to the surface membrane of granule cells, whereas its binding with PSD-95 and related PDZ proteins through a carboxy-terminal PDZ-binding domain is required for targeting the AMPA receptor to synapses. Expression of a mutant stargazin lacking the PDZ-binding domain in hippocampal pyramidal cells disrupts synaptic AMPA receptors, indicating that stargazin-like mechanisms for targeting AMPA receptors may be widespread in the central nervous system.


Neuron | 1999

Coupling of mGluR/Homer and PSD-95 Complexes by the Shank Family of Postsynaptic Density Proteins

Jian Cheng Tu; Bo Xiao; Scott Naisbitt; Joseph P. Yuan; Ronald S. Petralia; Paul R. Brakeman; Andrew Doan; Vinay K. Aakalu; Anthony Lanahan; Morgan Sheng; Paul F. Worley

Shank is a recently described family of postsynaptic proteins that function as part of the NMDA receptor-associated PSD-95 complex (Naisbitt et al., 1999 [this issue of Neuron]). Here, we report that Shank proteins also bind to Homer. Homer proteins form multivalent complexes that bind proline-rich motifs in group 1 metabotropic glutamate receptors and inositol trisphosphate receptors, thereby coupling these receptors in a signaling complex. A single Homer-binding site is identified in Shank, and Shank and Homer coimmunoprecipitate from brain and colocalize at postsynaptic densities. Moreover, Shank clusters mGluR5 in heterologous cells in the presence of Homer and mediates the coclustering of Homer with PSD-95/GKAP. Thus, Shank may cross-link Homer and PSD-95 complexes in the PSD and play a role in the signaling mechanisms of both mGluRs and NMDA receptors.


Cell | 2003

Phosphorylation of the AMPA Receptor GluR1 Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory

Hey Kyoung Lee; Kogo Takamiya; Jung Soo Han; Heng-Ye Man; Chong Hyun Kim; Gavin Rumbaugh; Sandy Yu; Lin Ding; Chun He; Ronald S. Petralia; Robert J. Wenthold; Michela Gallagher; Richard L. Huganir

Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.


Neuron | 1998

Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins.

Bo Xiao; Jian Cheng Tu; Ronald S. Petralia; Joseph P. Yuan; Andrew Doan; Christopher D Breder; Alicia Ruggiero; Anthony Lanahan; Robert J. Wenthold; Paul F. Worley

Homer is a neuronal immediate early gene (IEG) that is enriched at excitatory synapses and binds group 1 metabotropic glutamate receptors (mGluRs). Here, we characterize a family of Homer-related proteins derived from three distinct genes. Like Homer IEG (now termed Homer 1a), all new members bind group 1 mGluRs. In contrast to Homer 1a, new members are constitutively expressed and encode a C-terminal coiled-coil (CC) domain that mediates self-multimerization. CC-Homers form natural complexes that cross-link mGluRs and are enriched at the postsynaptic density. Homer 1a does not multimerize and blocks the association of mGluRs with CC-Homer complexes. These observations support a model in which the dynamic expression of Homer 1a competes with constitutively expressed CC-Homers to modify synaptic mGluR properties.


Neuron | 2006

Arc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking

Shoaib Chowdhury; Jason D. Shepherd; Hiroyuki Okuno; Gregory Lyford; Ronald S. Petralia; Niels Plath; Dietmar Kuhl; Richard L. Huganir; Paul F. Worley

Arc/Arg3.1 is an immediate-early gene whose mRNA is rapidly transcribed and targeted to dendrites of neurons as they engage in information processing and storage. Moreover, Arc/Arg3.1 is known to be required for durable forms of synaptic plasticity and learning. Despite these intriguing links to plasticity, Arc/Arg3.1s molecular function remains enigmatic. Here, we demonstrate that Arc/Arg3.1 protein interacts with dynamin and specific isoforms of endophilin to enhance receptor endocytosis. Arc/Arg3.1 selectively modulates trafficking of AMPA-type glutamate receptors (AMPARs) in neurons by accelerating endocytosis and reducing surface expression. The Arc/Arg3.1-endocytosis pathway appears to regulate basal AMPAR levels since Arc/Arg3.1 KO neurons exhibit markedly reduced endocytosis and increased steady-state surface levels. These findings reveal a novel molecular pathway that is regulated by Arc/Arg3.1 and likely contributes to late-phase synaptic plasticity and memory consolidation.


The Journal of Neuroscience | 1994

The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1

Ronald S. Petralia; Ya-Xian Wang; Robert J. Wenthold

Neuronal plasticity associated with learning, memory and development is controlled, in part, by NMDA receptors, which are complexes consisting of the subunit NMDAR1 (NR1) and one or more NMDAR2 subunits (NR2A- NR2D). We made a polyclonal antibody to a C-terminus peptide of NR2A. In analysis of transfected cell membranes, this antibody recognizes NR2A and NR2B, and to a slight extent, NR2C and NR2D. In Western blots of rat brain, the antibody labeled a single band that comigrated with NR2A and NR2B. This antibody (NR2A/B) did not cross-react with extracts from transfected cells expressing other glutamate receptor subunits, nor did it label non-neuronal tissues. Immunostained sections of rat brain showed significant staining throughout the nervous system, including olfactory bulb, cerebral cortex, hippocampus, caudate- putamen, and many brainstem nuclei, as well as in neurons of spinal cord and sensory ganglia. This widespread distribution of staining was similar to that found with an antibody to NR1, supporting the presence of functional NR1/NR2 complexes throughout the nervous system. In the cerebellum, in contrast to staining with NR1 antibody, Purkinje cell staining with NR2A/B antibody was low, indicating that these neurons may lack functional NMDA receptors. EM examination revealed dense staining in dendrites and postsynaptic densities in cerebral cortex and hippocampus, similar to those seen with antibody to NR1. Since functional NMDA receptor complexes at synapses appear to require both NR1 and NR2 subunit proteins for full function, this study provides structural evidence for functional NR1/NR2 receptors in vivo in the nervous system.


Journal of Cell Biology | 2003

Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins

Susumu Tomita; Lu Chen; Yoshimi Kawasaki; Ronald S. Petralia; Robert J. Wenthold; Roger A. Nicoll; David S. Bredt

Functional expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in cerebellar granule cells requires stargazin, a member of a large family of four-pass transmembrane proteins. Here, we define a family of transmembrane AMPA receptor regulatory proteins (TARPs), which comprise stargazin, γ-3, γ-4, and γ-8, but not related proteins, that mediate surface expression of AMPA receptors. TARPs exhibit discrete and complementary patterns of expression in both neurons and glia in the developing and mature central nervous system. In brain regions that express multiple isoforms, such as cerebral cortex, TARP–AMPA receptor complexes are strictly segregated, suggesting distinct roles for TARP isoforms. TARPs interact with AMPA receptors at the postsynaptic density, and surface expression of mature AMPA receptors requires a TARP. These studies indicate a general role for TARPs in controlling synaptic AMPA receptors throughout the central nervous system.


Nature | 2003

Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1

Sang Jeong Kim; Yu Shin Kim; Joseph P. Yuan; Ronald S. Petralia; Paul F. Worley; David J. Linden

Group I metabotropic glutamate receptors (consisting of mGluR1 and mGluR5) are G-protein-coupled neurotransmitter receptors that are found in the perisynaptic region of the postsynaptic membrane. These receptors are not activated by single synaptic volleys but rather require bursts of activity. They are implicated in many forms of neural plasticity including hippocampal long-term potentiation and depression, cerebellar long-term depression, associative learning, and cocaine addiction. When activated, group I mGluRs engage two G-protein-dependent signalling mechanisms: stimulation of phospholipase C and activation of an unidentified, mixed-cation excitatory postsynaptic conductance (EPSC), displaying slow activation, in the plasma membrane. Here we report that the mGluR1-evoked slow EPSC is mediated by the TRPC1 cation channel. TRPC1 is expressed in perisynaptic regions of the cerebellar parallel fibre–Purkinje cell synapse and is physically associated with mGluR1. Manipulations that interfere with TRPC1 block the mGluR1-evoked slow EPSC in Purkinje cells; however, fast transmission mediated by AMPA-type glutamate receptors remains unaffected. Furthermore, co-expression of mGluR1 and TRPC1 in a heterologous system reconstituted a mGluR1-evoked conductance that closely resembles the slow EPSC in Purkinje cells.


Nature Cell Biology | 2003

NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex

Nathalie Sans; Kate Prybylowski; Ronald S. Petralia; Kai Chang; Ya-Xian Wang; Claudia Racca; Stefano Vicini; Robert J. Wenthold

NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts with the PDZ-binding domain of Sec8, a member of the exocyst complex. Our results show that interactions between SAP102 and Sec8 are involved in the delivery of NMDARs to the cell surface in heterologous cells and neurons. Furthermore, they suggest that an exocyst–SAP102–NMDAR complex is an important component of NMDAR trafficking.


Neuron | 2007

Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons

Jinhyun Kim; Sung-Cherl Jung; Ann M. Clemens; Ronald S. Petralia; Dax A. Hoffman

Voltage-gated A-type K+ channel Kv4.2 subunits are highly expressed in the dendrites of hippocampal CA1 neurons. However, little is known about the subcellular distribution and trafficking of Kv4.2-containing channels. Here we provide evidence for activity-dependent trafficking of Kv4.2 in hippocampal spines and dendrites. Live imaging and electrophysiological recordings showed that Kv4.2 internalization is induced rapidly upon glutamate receptor stimulation. Kv4.2 internalization was clathrin mediated and required NMDA receptor activation and Ca2+ influx. In dissociated hippocampal neurons, mEPSC amplitude depended on functional Kv4.2 expression level and was enhanced by stimuli that induced Kv4.2 internalization. Long-term potentiation (LTP) induced by brief glycine application resulted in synaptic insertion of GluR1-containing AMPA receptors along with Kv4.2 internalization. We also found evidence of Kv4.2 internalization upon synaptically evoked LTP in CA1 neurons of hippocampal slice cultures. These results present an additional mechanism for synaptic integration and plasticity through the activity-dependent regulation of Kv4.2 channel surface expression.

Collaboration


Dive into the Ronald S. Petralia's collaboration.

Top Co-Authors

Avatar

Robert J. Wenthold

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ya-Xian Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pamela J. Yao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark P. Mattson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya Xian Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard L. Huganir

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bechara Kachar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bo Xiao

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge