Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald S. Rock is active.

Publication


Featured researches published by Ronald S. Rock.


Nature | 1999

Myosin-V is a processive actin-based motor

Amit D. Mehta; Ronald S. Rock; Matthias Rief; James A. Spudich; Mark S. Mooseker; Richard E. Cheney

Class-V myosins, one of 15 known classes of actin-based molecular motors, have been implicated in several forms of organelle transport perhaps working with microtubule-based motors such as kinesin,. Such movements may require a motor with mechanochemical properties distinct from those of myosin-II, which operates in large ensembles to drive high-speed motility as in muscle contraction. Based on its function and biochemistry, it has been suggested that myosin-V may be a processive motor, like kinesin,. Processivity means that the motor undergoes multiple catalytic cycles and coupled mechanical advances for each diffusional encounter with its track. This allows single motors to support movement of an organelle along its track. Here we provide direct evidence that myosin-V is indeed a processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Myosin VI is a processive motor with a large step size

Ronald S. Rock; Sarah E. Rice; Amber L. Wells; Thomas J. Purcell; James A. Spudich; H. Lee Sweeney

Myosin VI is a molecular motor involved in intracellular vesicle and organelle transport. To carry out its cellular functions myosin VI moves toward the pointed end of actin, backward in relation to all other characterized myosins. Myosin V, a motor that moves toward the barbed end of actin, is processive, undergoing multiple catalytic cycles and mechanical advances before it releases from actin. Here we show that myosin VI is also processive by using single molecule motility and optical trapping experiments. Remarkably, myosin VI takes much larger steps than expected, based on a simple lever-arm mechanism, for a myosin with only one light chain in the lever-arm domain. Unlike other characterized myosins, myosin VI stepping is highly irregular with a broad distribution of step sizes.


Current Biology | 2009

Mechanosensing through Cooperative Interactions between Myosin II and the Actin Crosslinker Cortexillin I

Yixin Ren; Janet C. Effler; Melanie Norstrom; Tianzhi Luo; Richard A. Firtel; Pablo A. Iglesias; Ronald S. Rock; Douglas N. Robinson

BACKGROUND Mechanosensing governs many processes from molecular to organismal levels, including during cytokinesis where it ensures successful and symmetrical cell division. Although many proteins are now known to be force sensitive, myosin motors with their ATPase activity and force-sensitive mechanical steps are well poised to facilitate cellular mechanosensing. For a myosin motor to experience tension, the actin filament must also be anchored. RESULTS Here, we find a cooperative relationship between myosin II and the actin crosslinker cortexillin I where both proteins are essential for cellular mechanosensory responses. Although many functions of cortexillin I and myosin II are dispensable for cytokinesis, all are required for full mechanosensing. Our analysis demonstrates that this mechanosensor has three critical elements: the myosin motor where the lever arm acts as a force amplifier, a force-sensitive bipolar thick-filament assembly, and a long-lived actin crosslinker, which anchors the actin filament so that the motor may experience tension. We also demonstrate that a Rac small GTPase inhibits this mechanosensory module during interphase, allowing the module to be primarily active during cytokinesis. CONCLUSIONS Overall, myosin II and cortexillin I define a cellular-scale mechanosensor that controls cell shape during cytokinesis. This system is exquisitely tuned through the enzymatic properties of the myosin motor, its lever arm length, and bipolar thick-filament assembly dynamics. The system also requires cortexillin I to stably anchor the actin filament so that the myosin motor can experience tension. Through this cross-talk, myosin II and cortexillin I define a cellular-scale mechanosensor that monitors and corrects shape defects, ensuring symmetrical cell division.


Nature Structural & Molecular Biology | 2004

Myosin VI walks hand-over-hand along actin

Zeynep Ökten; L. Stirling Churchman; Ronald S. Rock; James A. Spudich

Myosin VI is a molecular motor that can walk processively on actin filaments with a 36-nm step size. The walking mechanism of myosin VI is controversial because it takes very large steps without an apparent lever arm of required length. Therefore, myosin VI is argued to be the first exception to the widely established lever arm theory. It is therefore critical to directly demonstrate whether this motor walks hand-over-hand along actin despite its short lever arm. Here, we follow the displacement of a single myosin VI head during the stepping process. A single head is displaced 72 nm during stepping, whereas the center of mass previously has been shown to move 36 nm. The most likely explanation for this result is a hand-over-hand walking mechanism. We hypothesize the existence of a flexible element that would allow the motor to bridge the observed 72-nm distance.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A myosin motor that selects bundled actin for motility

Stanislav Nagy; Benjamin Ricca; Melanie Norstrom; David S. Courson; Crista M. Brawley; Philip A. Smithback; Ronald S. Rock

Eukaryotic cells organize their contents through trafficking along cytoskeletal filaments. The leading edge of a typical metazoan cytoskeleton consists of a dense and complex arrangement of cortical actin. A dendritic mesh is found across the broad lamellopodium, with long parallel bundles at microspikes and filopodia. It is currently unclear whether and how myosin motors identify the few actin filaments that lead to the correct destination, when presented with many similar alternatives within the cortex. Here we show that myosin X, an actin-based motor that concentrates at the distal tips of filopodia, selects the fascin-actin bundle at the filopodial core for motility. Myosin X moves individual actin filaments poorly in vitro, often supercoiling actin into plectonemes. However, single myosin X motors move robustly and processively along fascin-actin bundles. This selection requires only parallel, closely spaced filaments, as myosin X is also processive on artificial actin bundles formed by molecular crowding. Myosin X filopodial localization is perturbed in fascin-depleted HeLa cells, demonstrating that fascin bundles also direct motility in vivo. Our results demonstrate that myosin X recognizes the local structural arrangement of filaments in long bundles, providing a mechanism for sorting cargo to distant target sites.


Nature Cell Biology | 2001

A myosin II mutation uncouples ATPase activity from motility and shortens step size.

Coleen T. Murphy; Ronald S. Rock; James A. Spudich

It is thought that Switch II of myosin, kinesin and G proteins has an important function in relating nucleotide state to protein conformation. Here we examine a myosin mutant containing an S456L substitution in the Switch II region. In this protein, mechanical activity is uncoupled from the chemical energy of ATP hydrolysis so that its gliding velocity on actin filaments is only one-tenth of that of the wild type. The mutant spends longer in the strongly bound state and exhibits a shorter step size, which together account for the reduction in in vitro velocity. This is the first single point mutation in myosin that has been found to affect step size.


Journal of Biological Chemistry | 2011

Actin Filament Bundling by Fimbrin Is Important for Endocytosis, Cytokinesis, and Polarization in Fission Yeast

Colleen T. Skau; David S. Courson; Andrew J. Bestul; Jonathan D. Winkelman; Ronald S. Rock; Vladimir Sirotkin; David R. Kovar

Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament “gatekeeper” and as a filament cross-linker.


Journal of Biological Chemistry | 2010

Actin Cross-link Assembly and Disassembly Mechanics for α-Actinin and Fascin

David S. Courson; Ronald S. Rock

Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and α-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. α-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Unconventional myosin traffic in cells reveals a selective actin cytoskeleton

Crista M. Brawley; Ronald S. Rock

Eukaryotic cells have a self-organizing cytoskeleton where motors transport cargoes along cytoskeletal tracks. To understand the sorting process, we developed a system to observe single-molecule motility in a cellular context. We followed myosin classes V, VI, and X on triton-extracted actin cytoskeletons from Drosophila S2, mammalian COS-7, and mammalian U2OS cells. We find that these cells vary considerably in their global traffic patterns. The S2 and U2OS cells have regions of actin that either enhance or inhibit specific myosin classes. U2OS cells allow for 1 motor class, myosin VI, to move along stress fiber bundles, while motility of myosin V and X are suppressed. Myosin X motors are recruited to filopodia and the lamellar edge in S2 cells, whereas myosin VI motility is excluded from the same regions. Furthermore, we also see different velocities of myosin V motors in central regions of S2 cells, suggesting regional control of motor motility by the actin cytoskeleton. We also find unexpected features of the actin cytoskeletal network, including a population of reversed filaments with the barbed-end toward the cell center. This myosin motor regulation demonstrates that native actin cytoskeletons are more than just a collection of filaments.


Journal of Biological Chemistry | 2010

Unconventional processive mechanics of non-muscle myosin IIB

Melanie Norstrom; Philip A. Smithback; Ronald S. Rock

Proper tension maintenance in the cytoskeleton is essential for regulated cell polarity, cell motility, and division. Non-muscle myosin IIB (NMIIB) generates tension along actin filaments in many cell types, including neuronal, cardiac, and smooth muscle cells. Using a three-bead optical trapping assay, we recorded NMIIB interactions with actin filaments to determine if a NMIIB dimer cycles along an actin filament in a processive manner. Our results show that NMIIB is the first myosin II to exhibit evidence of processive stepping behavior. Analysis of these data reveals a forward displacement of 5.4 nm and, surprisingly, frequent backward steps of −5.9 nm. Processive stepping along the long pitch helix of actin may provide a mechanism for disassembly of fascin-actin bundles. Forward steps and detachment are weakly force-dependent at all forces, consistent with rate-limiting and force-dependent ADP release. However, backward steps are nearly force-independent. Our data support a model in which NMIIB can readily move in both directions at stall, which may be important for a general regulator of cytoskeleton tension.

Collaboration


Dive into the Ronald S. Rock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah E. Rice

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge