Ronald T.K. Pang
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronald T.K. Pang.
Proceedings of the National Academy of Sciences of the United States of America | 2012
W Liu; Ronald T.K. Pang; Philip C.N. Chiu; Benancy Po Chau Wong; Kaiqin Lao; Kai-Fai Lee; William S.B. Yeung
In mammals, the sperm deliver mRNA of unknown function into the oocytes during fertilization. The role of sperm microRNAs (miRNAs) in preimplantation development is unknown. miRNA profiling identified six miRNAs expressed in the sperm and the zygotes but not in the oocytes or preimplantation embryos. Sperm contained both the precursor and the mature form of one of these miRNAs, miR-34c. The absence of an increased level of miR-34c in zygotes derived from α-amanitin–treated oocytes and in parthenogenetic oocytes supported a sperm origin of zygotic miR-34c. Injection of miR-34c inhibitor into zygotes inhibited DNA synthesis and significantly suppressed first cleavage division. A 3′ UTR luciferase assay and Western blotting demonstrated that miR-34c regulates B-cell leukemia/lymphoma 2 (Bcl-2) expression in the zygotes. Coinjection of anti–Bcl-2 antibody in zygotes partially reversed but injection of Bcl-2 protein mimicked the effect of miR-34c inhibition. Oocyte activation is essential for the miR-34c action in zygotes, as demonstrated by a decrease in 3′UTR luciferase reporter activity and Bcl-2 expression after injection of precursor miR-34c into parthenogenetic oocytes. Our findings provide evidence that sperm-borne miR-34c is important for the first cell division via modulation of Bcl-2 expression.
Biology of Reproduction | 2008
Philip C.N. Chiu; Ben S.T. Wong; Man-Kin Chung; Kevin K.W. Lam; Ronald T.K. Pang; Kai-Fai Lee; S.B. Sumitro; Satish K. Gupta; William S.B. Yeung
Abstract Acrosome reaction is crucial to the penetration of spermatozoa through the zona pellucida (ZP). Glycosylation of ZP glycoproteins is important in spermatozoa-ZP interaction. Human ZP glycoprotein-3 (ZP3) is believed to initiate acrosome reaction. Recently, human ZP4 was also implicated in inducing acrosome reaction. These studies were based on recombinant human ZP proteins with glycosylation different from their native counterparts. In the present study, the effects of native human ZP3 and ZP4 on acrosome reaction and spermatozoa-ZP binding were investigated. Native human ZP3 and ZP4 were immunoaffinity-purified. They induced acrosome reaction and inhibited spermatozoa-ZP binding time- and dose-dependently to different extents. These biological activities of human ZP3 and ZP4 depended partly on their glycosylation, with N-linked glycosylation contributing much more significantly than O-linked glycosylation. Studies with inhibitors showed that both human ZP3- and ZP4-induced acrosome reactions were protein kinase-C, protein tyrosine kinase, T-type Ca2+ channels, and extracellular Ca2+ dependent. G-protein also participated in human ZP3- but not in ZP4-induced acrosome reaction. On the other hand, protein kinase-A and L-type Ca2+ channels took part only in human ZP4-induced acrosome reaction. This manuscript describes for the first time the actions of purified native human ZP3 and ZP4 on acrosome reaction and spermatozoa-ZP binding..
PLOS ONE | 2012
W Liu; Ronald T.K. Pang; Ana W.Y. Cheong; Ernest Hung Yu Ng; Kai Qin Lao; Kai-Fai Lee; William S.B. Yeung
MicroRNAs interact with multiple mRNAs resulting in their degradation and/or translational repression. This report used the delayed implantation model to determine the role of miRNAs in blastocysts. Dormant blastocysts in delayed implanting mice were activated by estradiol. Differential expression of 45 out of 238 miRNAs examined was found between the dormant and the activated blastocysts. Five of the nine members of the microRNA lethal-7 (let-7) family were down-regulated after activation. Human blastocysts also had a low expression of let-7 family. Forced-expression of a family member, let-7a in mouse blastocysts decreased the number of implantation sites (let-7a: 1.1±0.4; control: 3.8±0.4) in vivo, and reduced the percentages of blastocyst that attached (let-7a: 42.0±8.3%; control: 79.0±5.1%) and spreaded (let-7a: 33.5±2.9%; control: 67.3±3.8%) on fibronectin in vitro. Integrin-β3, a known implantation-related molecule, was demonstrated to be a target of let-7a by 3′-untranslated region reporter assay in cervical cancer cells HeLa, and Western blotting in mouse blastocysts. The inhibitory effect of forced-expression of let-7a on blastocyst attachment and outgrowth was partially nullified in vitro and in vivo by forced-expression of integrin-β3. This study provides the first direct evidence that let-7a is involved in regulating the implantation process partly via modulation of the expression of integrin-β3. (200 words).
Human Reproduction | 2008
Philip C.N. Chiu; Ben S.T. Wong; Cheuk-Lun Lee; Ronald T.K. Pang; Kai-Fai Lee; S.B. Sumitro; Satish K. Gupta; William S.B. Yeung
BACKGROUND Fertilization starts with the binding of the spermatozoa to the zona pellucida (ZP) of the oocyte. Such binding is a carbohydrate-mediated event and consists of a series of tightly regulated events. Molecular interactions between spermatozoon and ZP in human are not well characterized due to limited availability of oocytes for research. Our current technology cannot generate recombinant human ZP (hZP) glycoproteins with native glycosylation. METHODS AND RESULTS In this study, hZP glycoproteins, hZP2 (approximately 120 kDa), hZP3 (approximately 58 kDa) and hZP4 (approximately 65 kDa) were purified from ZP (purity >88%) by immunoaffinity columns. The binding sites of the purified native hZP3 and hZP4 were localized to the acrosome region of the capacitated human spermatozoa, and were lost after acrosome reaction. Purified human hZP2 bound to this region only in acrosome-reacted spermatozoa. Differential binding of the three glycoproteins to the post-acrosomal region and the midpiece of the spermatozoa was observed. In addition, hZP3, but not hZP2 and hZP4, induced hyperactivation. The stimulatory activity was dependent partly on N-linked glycosylation of hZP3. CONCLUSIONS This manuscript describes the biological activities of purified hZP glycoproteins from the native source for the first time.
Journal of Reproductive Immunology | 2011
Cheuk-Lun Lee; Kevin K.W. Lam; Hannu Koistinen; Markku Seppälä; Maciej Kurpisz; Nelson Fernandez; Ronald T.K. Pang; William S.B. Yeung; Philip C.N. Chiu
Glycodelin-A (GdA) is a glycoprotein secreted from the endometrial glands and decidual glandular epithelium. Given its abundance and ubiquitous distribution in the first trimester uterus, GdA may be involved in early placental development via its modulatory effect on immune and trophoblast cells. GdA inhibits activation and proliferation, and induces apoptosis of T cells. By selectively inducing Th1 cell death, GdA may shift the Th1/Th2 ratio at the feto-maternal interface. This is also achieved indirectly through enhanced expression of Fas in the Th1 cells, thus making them vulnerable to cell death through Fas ligand expressed on trophoblast, endometrial, and activated T helper cells. GdA also promotes secretion of the Th2 cytokines IL-6 and IL-13 from NK cells, and induces immunological tolerance of dendritic cells and apoptosis of monocytes. Specific glycosylation is a prerequisite for the biological activities of GdA. Reduction in α2-6 sialylation of GdA, as in gestational diabetes, is associated with impairment of its T cell apoptosis-inducing activities. This review integrates recent studies on GdA and its role as a paracrine regulator in early pregnancy.
Carcinogenesis | 2014
Carmen O.N. Leung; Wen Deng; Tian-Min Ye; Hys Ngan; Sai Wah Tsao; Annie N.Y. Cheung; Ronald T.K. Pang; William S.B. Yeung
Human papillomaviruses (HPVs) is the principal etiological agent of cervical cancer (CC). However, exposure to the high-risk type HPV alone is insufficient for tumor formation, and additional factors are required for the HPV-infected cells to become tumorigenic. Dysregulated microRNAs (miRNAs) expression is frequently observed in cancer but their roles in the formation of CC have not been fully revealed. In this study, we compared the expression of miR-135a in laser capture microdissected cervical specimens and confirmed overexpression of the miRNA in malignant cervical squamous cell carcinoma compared with precancerous lesions. Transient force-expression of miR-135a induced growth in low-density culture, anchorage-independent growth, proliferation and invasion of a HPV-16 E6/E7-immortalized cervical epithelial cell line, NC104-E6/E7. The observed effects were due to the inhibitory action of miR-135a on its direct target seven in absentia homolog 1 (SIAH1) leading to upregulation of β-catenin/T cell factor signaling. miR-135a force-expression enhanced the growth of HeLa- and NC104-E6/E7-derived tumor in vivo. The effect of miR-135a could be partially nullified by SIAH1 force-expression. More importantly, the expression of SIAH1 and β-catenin correlated with that of miR-135a in precancerous and cancerous lesions of cervical biopsies. By comparing the tumorigenic activities of miR-135a in E6/E7 positive/negative cell lines and in NC104-E6/E7 with or without E6/E7 knockdown, we demonstrated that HPV E6/E7 proteins are prerequisite for miR-135a as an oncomiR. Taken together, miR-135a/SIAH1/β-catenin signaling is important in the transformation and progression of cervical carcinoma.
PLOS ONE | 2011
Ronald T.K. Pang; W Liu; Carmen O.N. Leung; Tian-Min Ye; Peter C. K. Kwan; Kai-Fai Lee; William S.B. Yeung
Background MicroRNAs (miRNAs) are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific miRNAs, miR-135a, in preimplantation embryo development was investigated. Methodology/Principal Findings Microinjection of miR-135a inhibitor suppressed first cell cleavage in more than 30% of the zygotes. Bioinformatics analysis identified E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (Siah1a) as a predicted target of miR-135a. Western blotting and 3′UTR luciferase functional assays demonstrated that miR-135a down-regulated the expression of Siah1 in HeLa cells and in mouse zygotes. Siah1a was expressed in preimplantation embryos and its expression pattern negatively correlated with that of miR-135a. Co-injection of Siah1a-specific antibody with miR-135a inhibitor partially nullified the effect of miR-135a inhibition. Proteasome inhibition by MG-132 revealed that miR-135a regulated proteasomal degradation and potentially controlled the expression of chemokinesin DNA binding protein (Kid). Conclusions/Significance The present study demonstrated for the first time that zygotic specific miRNA modulates the first cell cleavage through regulating expression of Siah1a.
Journal of Biological Chemistry | 2011
Kevin K.W. Lam; Philip C.N. Chiu; Cheuk-Lun Lee; Ronald T.K. Pang; Carmen O.N. Leung; Hannu Koistinen; Markku Seppälä; Pak Chung Ho; William S.B. Yeung
During placentation, the cytotrophoblast differentiates into the villous cytotrophoblast and the extravillous cytotrophoblast. The latter invades the decidualized endometrium. Glycodelin-A (GdA) is abundantly synthesized by the decidua but not the trophoblast. Previous data indicate that GdA suppresses the invasion of trophoblast cell lines by down-regulating proteinase expression and activities. This study addresses the signaling pathway involved in the above phenomenon. GdA was found to suppress phosphorylation of ERKs and expression of their downstream effector c-Jun, a component of the transcription factor activator protein-1 (AP-1). The involvement of ERKs and c-Jun in suppressing trophoblast invasion and biosynthesis of proteinases was confirmed by using siRNA knockdown and pharmacological inhibitors. Desialylation reduced binding affinity of GdA toward and invasion suppressive activities on the trophoblast. Co-immunoprecipitation showed that Siglec-6 on the trophoblast was the binding protein of GdA. The binding of GdA to Siglec-6 was sialic acid-dependent. Treatment with anti-Siglec-6 antibody abolished the invasion suppressive activities of GdA. These results show that GdA interacts with Siglec-6 to suppress trophoblast invasiveness by down-regulating the ERK/c-Jun signaling pathway.
Journal of Cellular Biochemistry | 1999
Samuel S.M. Ng; Ronald T.K. Pang; Billy K. C. Chow; Christopher H.K. Cheng
Human secretin receptor is a G protein‐coupled receptor that is functionally linked to the cAMP second messenger system by stimulation of adenylate cyclase. To functionally characterize the receptor and evaluate its signal transduction pathway, the full‐length human secretin receptor cDNA was subcloned into the mammalian expression vector pRc/CMV and expressed in cultured CHO cells. Intracellular cAMP accumulation of the stably transfected cells was measured by a radioimmunoassay (RIA), while the extracellular acidification rate was measured by the Cytosensor microphysiometer. Human secretin and biotinylated human secretin were equipotent in both assays in a dose‐dependent manner. The EC50 values of stimulating the intracellular cAMP accumulation and the extracellular acidification rate were 0.2–0.5 nM and 0.1 nM, respectively, indicating that microphysiometry is more sensitive than the cAMP assay in monitoring ligand stimulation of the human secretin receptor. The secretin‐stimulated response could be mimicked by forskolin and augmented by the phosphodiesterase inhibitor 3‐isobutyl‐1‐methylxanthine, indicating that the extracellular acidification response is positively correlated with intracellular cAMP level. The response could be abolished by the protein kinase A inhibitor H‐89, suggesting that protein kinase A plays an essential role in the intracellular signaling of the receptor. Upon repeated stimulation by the ligand, the peak acidification responses did not change significantly at both physiological (0.03 nM and 3 nM) and pharmacological (0.3 μM) concentrations of human secretin, suggesting that the human secretin receptor did not exhibit robust homologous desensitization. J. Cell. Biochem. 72:517–527, 1999.
American Journal of Reproductive Immunology | 2016
W Liu; Ziru Niu; Qian Li; Ronald T.K. Pang; Philip C.N. Chiu; William S.B. Yeung
In mammals, implantation involves interactions between an activated blastocyst and a receptive endometrium. There are controversies on the role of microRNAs in preimplantation embryo development. The actions of endometrial microRNAs on implantation are beginning to be understood.