Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald W. Matheny is active.

Publication


Featured researches published by Ronald W. Matheny.


Endocrinology | 2010

Minireview: Mechano-Growth Factor: A Putative Product of IGF-I Gene Expression Involved in Tissue Repair and Regeneration

Ronald W. Matheny; Bradley C. Nindl; Martin L. Adamo

The discovery that IGF-I mRNAs encoding isoforms of the pro-IGF-I molecule are differentially regulated in response to mechanical stress in skeletal muscle has been the impetus for a number of studies designed to demonstrate that alternative splicing of IGF-I pre-mRNA involving exons 4, 5, and 6 gives rise to a unique peptide derived from pro-IGF-I that plays a novel role in myoblast proliferation. Research suggests that after injury to skeletal muscle, the IGF-IEb mRNA splice variant is up-regulated initially, followed by up-regulation of the IGF-IEa splice variant at later time points. Up-regulation of IGF-IEb mRNA correlates with markers of satellite cell and myoblast proliferation, whereas up-regulation of IGF-IEa mRNA is correlated with differentiation to mature myofibers. Due to the apparent role of IGF-IEb up-regulation in muscle remodeling, IGF-IEb mRNA was also named mechano-growth factor (MGF). A synthetically manufactured peptide (also termed MGF) corresponding to the 24 most C-terminal residues of IGF-IEb has been shown to promote cellular proliferation and survival. However, no analogous peptide product of the Igf1 gene has been identified in or isolated from cultured cells, their conditioned medium, or in vivo animal tissues or biological fluids. This review will discuss the relationship of the Igf1 gene to MGF and will differentiate actions of synthetic MGF from any known product of Igf1. Additionally, the role of MGF in satellite cell activation, aging, neuroprotection, and signaling will be discussed. A survey of outstanding questions relating to MGF will also be provided.


Experimental Biology and Medicine | 2009

Current perspectives on akt akt-ivation and akt-ions

Ronald W. Matheny; Martin L. Adamo

The serine/threonine kinase Akt is an effector of PI3K-generated phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and is a principle mediator of growth factor-induced signal transduction. Akt is activated through phosphorylation by specific kinases, and its activity is reduced directly by phosphorylation-site-specific phosphatases. In addition, Akt activity is effectively reduced by the action of phosphatases which dephosphorylate PI(3,4,5)P3, thereby reducing the levels of the essential lipid activators of PDK1 and Akt. The functions of Akt are pleiotropic and include regulation of cellular proliferation, differentiation, protein synthesis, and survival. Akt stimulates protein synthesis through actions on mTOR/p70S6K, and promotes survival by phosphorylating and inactivating pro-apoptotic molecules such as Ask1, Bad, Bax, and FoxO3a. Furthermore, loss of Akt decreases the intracellular ATP:AMP ratio, thus establishing a role for Akt in energy regulation. Three isoforms of Akt have been identified, and although redundant functions between isoforms exist, recent investigations have enumerated unique functions for each. Therefore, targeting specific Akt isozymes in a tissue- and context-specific fashion may lead to a greater understanding of Akt-mediated processes.


Aging Cell | 2014

Reductions in serum IGF-1 during aging impair health span.

Zhenwei Gong; Oran D. Kennedy; Hui Sun; Yingjie Wu; Garry A. Williams; Laura Klein; Luis Cardoso; Ronald W. Matheny; Gene B. Hubbard; Yuji Ikeno; Roger P. Farrar; Mitchell B. Schaffler; Martin L. Adamo; Radhika Muzumdar; Shoshana Yakar

In lower or simple species, such as worms and flies, disruption of the insulin‐like growth factor (IGF)‐1 and the insulin signaling pathways has been shown to increase lifespan. In rodents, however, growth hormone (GH) regulates IGF‐1 levels in serum and tissues and can modulate lifespan via/or independent of IGF‐1. Rodent models, where the GH/IGF‐1 axis was ablated congenitally, show increased lifespan. However, in contrast to rodents where serum IGF‐1 levels are high throughout life, in humans, serum IGF‐1 peaks during puberty and declines thereafter during aging. Thus, animal models with congenital disruption of the GH/IGF‐1 axis are unable to clearly distinguish between developmental and age‐related effects of GH/IGF‐1 on health. To overcome this caveat, we developed an inducible liver IGF‐1‐deficient (iLID) mouse that allows temporal control of serum IGF‐1. Deletion of liver Igf ‐1 gene at one year of age reduced serum IGF‐1 by 70% and dramatically impaired health span of the iLID mice. Reductions in serum IGF‐1 were coupled with increased GH levels and increased basal STAT5B phosphorylation in livers of iLID mice. These changes were associated with increased liver weight, increased liver inflammation, increased oxidative stress in liver and muscle, and increased incidence of hepatic tumors. Lastly, despite elevations in serum GH, low levels of serum IGF‐1 from 1 year of age compromised skeletal integrity and accelerated bone loss. We conclude that an intact GH/IGF‐1 axis is essential to maintain health span and that elevated GH, even late in life, associates with increased pathology.


Cell Death & Differentiation | 2010

PI3K p110α and p110Β have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts

Ronald W. Matheny; Martin L. Adamo

Catalytic subunits of phosphoinositide-3-kinase (PI3K) play a critical role in growth factor signaling and survival by phosphorylating inositol lipids. We found that PI3K Class-IA p110α and p110β have distinct functions in myoblasts. Inhibition of p110α reduced insulin-like growth factor-I (IGF-I)-stimulated Akt activity and prevented IGF-I-mediated survival in H2O2-treated cells; in contrast, siRNA knockdown of p110β increased IGF-I-stimulated Akt activity. However, inhibition of p110β catalytic activity did not increase IGF-I-stimulated Akt activity, suggesting a role for p110β protein interactions rather than decreased generation of phosphoinositides in this effect. Increased Akt activity in p110β-deficient myoblasts was associated with diminished extracellular signal-regulated kinase (ERK) activation as well as ERK-dependent IRS-1 636/639 phosphorylation, findings we show to be independent of p110β catalytic function, but associated with insulin-like growth factor-I receptor (IGF-IR) endocytosis. We also report that IGF-I protects myoblasts from H2O2-induced apoptosis through a mechanism that requires p110α, but may be independent of Akt or ERK under conditions of Akt and ERK inhibition. These observations suggest that both p110α and p110β are essential for growth and metabolism in myoblasts. Overall, our results provide new evidence for the roles of p110 isoforms in promoting cellular proliferation and homeostasis, IGF-IR internalization, and in opposing apoptosis.


Endocrinology | 2011

Loss of IGF-IEa or IGF-IEb Impairs Myogenic Differentiation

Ronald W. Matheny; Bradley C. Nindl

Actions of protein products resulting from alternative splicing of the Igf1 gene have received increasing attention in recent years. However, the significance and functional relevance of these observations remain poorly defined. To address functions of IGF-I splice variants, we examined the impact of loss of IGF-IEa and IGF-IEb on the proliferation and differentiation of cultured mouse myoblasts. RNA interference-mediated reductions in total IGF-I, IGF-IEa alone, or IGF-IEb alone had no effect on cell viability in growth medium. However, cells deficient in total IGF-I or IGF-IEa alone proliferated significantly slower than control cells or cells deficient in IGF-IEb in serum-free media. Simultaneous loss of both or specific loss of either splice variant significantly inhibited myosin heavy chain (MyHC) immunoreactivity by 70-80% (P < 0.01) under differentiation conditions (48 h in 2% horse serum) as determined by Western immunoblotting. This loss in protein was associated with reduced MyHC isoform mRNAs, because reductions in total IGF-I or IGF-IEa mRNA significantly reduced MyHC mRNAs by approximately 50-75% (P < 0.05). Loss of IGF-IEb also reduced MyHC isoform mRNA significantly, with the exception of Myh7, but to a lesser degree (∼20-40%, P < 0.05). Provision of mature IGF-I, but not synthetic E peptides, restored Myh3 expression to control levels in cells deficient in IGF-IEa or IGF-IEb. Collectively, these data suggest that IGF-I splice variants may regulate myoblast differentiation through the actions of mature IGF-I and not the E peptides.


Biochemical and Biophysical Research Communications | 2009

Effects of PI3K catalytic subunit and Akt isoform deficiency on mTOR and p70S6K activation in myoblasts

Ronald W. Matheny; Martin L. Adamo

The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110alpha, p110beta, and simultaneous knockdown of p110alpha and p110beta resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110beta-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110alpha or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.


The Journal of Clinical Endocrinology and Metabolism | 2014

Recovery of Endocrine and Inflammatory Mediators Following an Extended Energy Deficit

Paul C. Henning; Dennis E. Scofield; Barry A. Spiering; Jeffery S. Staab; Ronald W. Matheny; Martha A. Smith; Shalender Bhasin; Bradley C. Nindl

CONTEXT Due to current operational requirements, elite soldiers deploy quickly after completing arduous training courses. Therefore, it is imperative that endocrine and inflammatory mediators have fully recovered. OBJECTIVE Our objective was to determine whether a short-term (2-6 wk) recovery period was sufficient to restore endocrine and inflammatory homeostasis after sustained energy deficit. DESIGN Before and immediately after the course, serum concentrations of inflammatory and endocrine markers were taken along with anthropometric measures prior to and immediately after the Army Ranger course. In addition, nine soldiers were assessed between 2 and 6 weeks after the course. SETTING This research occurred in a field setting during an intensive 8-week military training course characterized by high-energy expenditure, energy restriction, and sleep deprivation (U.S. Army Ranger School). PARTICIPANTS Twenty-three male soldiers (23.0 ± 2.8 y; 177.6 ± 7.9 cm; 81.0 ± 9.6 kg, 16.8 ± 3.9% body fat) participated in this study. INTERVENTIONS There were no interventions used in this research. OUTCOME MEASURES AND RESULTS Significant changes occurred in circulating total testosterone (-70%), brain-derived neurotrophic factor (-33%), total IGF-1 (-38.7%), free IGF-1 (-41%), IGF binding protein (IGFBP-6; -23.4%), sex-hormone binding globulin (+46%), thyroid stimulating hormone (+85%), IGFBP-1 (+534.4%), IGFBP-2 (+98.3%), IGFBP-3 (+14.7%), IL-4 (+135%), IL-6 (+217%), and IL-8 (+101%). Significant changes in body mass (-8%), bicep (-14%), forearm (-5%), thigh (-7%), and calf (-2%) circumferences, sum of skinfolds (-52%), and percentage body fat (-54%). All anthropometric, inflammatory, and hormonal values, except T3, were restored to baseline levels within 2-6 weeks after the course. CONCLUSIONS Endocrine markers and anthropometric measures were degraded, and inflammatory mediators increased after an extended energy deficit. A short-term recovery of 2-6 weeks was sufficient to restore these mediators.


Biochemical and Biophysical Research Communications | 2009

Role of Akt isoforms in IGF-I-mediated signaling and survival in myoblasts

Ronald W. Matheny; Martin L. Adamo

Oxidative stress has been shown to induce apoptosis in a variety of tissues, while insulin-like growth factor-I (IGF-I) can oppose this effect. We found that H(2)O(2) promoted cell death and apoptosis in C2C12 myoblasts, an effect that was completely prevented by exogenous IGF-I. One downstream mediator of IGF-I survival signaling is the serine/threonine kinase Akt, of which three isoforms have been identified in mammals. We found that Akt1 and Akt3 act on pro-apoptotic target molecules in an isoform-specific manner. Both Akt1 and Akt3 were responsible for phosphorylating FoxO3a at S253 and FoxO1 at T24, while Akt1 alone phosphorylated Bad at S136 and FoxO3a at T32. Our results provide evidence for IGF-I-stimulated isoform-specific actions of Akt on molecules involved in promoting apoptosis.


Growth Factors Journal | 2010

Protein kinase D mediates the synergistic effects of BMP-7 and IGF-I on osteoblastic cell differentiation

Lee Chuan C Yeh; Xiuye Ma; Ronald W. Matheny; Martin L. Adamo; John C. Lee

We previously showed that exogenous insulin-like growth factor-I (IGF-I) and bone morphogenetic protein-7 (BMP-7) synergistically stimulated osteoblast differentiation in fetal rat calvaria (FRC) cells. We have now shown that BMP-7 alone and the BMP-7 and IGF-I combination synergistically stimulated protein kinase D (PKD) phosphorylation at Ser744/748 and Ser916. Transfection of FRC cells with a constitutively active PKD stimulated marker expression, while transfection with a catalytically inactive PKD did not. Moreover, Gö6976, which inhibits protein kinase C (PKC) α and β1, blocked PKD phosphorylation and the synergistic action of the BMP-7 and IGF-I combination on osteoblast differentiation, whereas Gö6983, which inhibits PKCα, β, γ, δ, and ζ, did not. Our results suggest that the FRC cell differentiation induced by BMP-7 and the BMP-7 and IGF-I combination requires stimulation of PKD activity. Our results are consistent with a novel mechanism in which combined BMP-7 and IGF-I signaling activates upstream novel PKC(s), which then phosphorylates and activates PKD, leading to enhanced osteoblast differentiation.


Experimental Gerontology | 2011

Impairment of IGF-I expression and anabolic signaling following ischemia/reperfusion in skeletal muscle of old mice.

David W. Hammers; Ronald W. Matheny; Christian Sell; Martin L. Adamo; Thomas J. Walters; J. Scot Estep; Roger P. Farrar

With the advancement of age, skeletal muscle undergoes a progressive decline in mass, function, and regenerative capacity. Previously, our laboratory has reported an age-reduction in recovery and local induction of IGF-I gene expression with age following tourniquet (TK)-induced skeletal muscle ischemia/reperfusion (I/R). In this study, young (6 mo) and old (24-28 mo) mice were subjected to 2h of TK-induced ischemia of the hindlimb followed by 1, 3, 5, or 7 days of reperfusion. Real time-PCR analysis revealed clear age-related reductions and temporal alterations in the expression of IGF-I and individual IGF-I Ea and Eb splice variants. ELISA verified a reduction of IGF-I peptide with age following 7 day recovery from TK. Western blotting showed that the phosphorylation of Akt, mTOR, and FoxO3, all indicators of anabolic activity, were reduced in the muscles of old mice. These data indicate that an age-related impairment of IGF-I expression and intracellular signaling does exist following injury, and potentially has a role in the impaired recovery of skeletal muscle with age.

Collaboration


Dive into the Ronald W. Matheny's collaboration.

Top Co-Authors

Avatar

Julie M. Hughes

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Martin L. Adamo

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Bradley C. Nindl

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffery S. Staab

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis E. Scofield

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Erin Gaffney-Stomberg

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Katelyn I. Guerriere

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry A. Spiering

United States Army Research Institute of Environmental Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge