Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald W. Stam is active.

Publication


Featured researches published by Ronald W. Stam.


Cancer Cell | 2003

Inhibition of FLT3 in MLL: Validation of a therapeutic target identified by gene expression based classification

Scott A. Armstrong; Andrew L. Kung; Meghann E Mabon; Lewis B. Silverman; Ronald W. Stam; Monique L. den Boer; Rob Pieters; John H. Kersey; Stephen E. Sallan; Jonathan A. Fletcher; Todd R. Golub; James D. Griffin; Stanley J. Korsmeyer

We recently found that MLL-rearranged acute lymphoblastic leukemias (MLL) have a unique gene expression profile including high level expression of the receptor tyrosine kinase FLT3. We hypothesized that FLT3 might be a therapeutic target in MLL and found that 5 of 30 MLLs contain mutations in the activation loop of FLT3 that result in constitutive activation. Three are a newly described deletion of I836 and the others are D835 mutations. The recently described FLT3 inhibitor PKC412 proved cytotoxic to Ba/F3 cells dependent upon activated FLT3 containing either mutation. PKC412 is also differentially cytotoxic to leukemia cells with MLL translocations and FLT3 that is activated by either overexpression of the wild-type receptor or mutation. Finally, we developed a mouse model of MLL and used bioluminescent imaging to determine that PKC412 is active against MLL in vivo.


Cancer Cell | 2008

In Childhood Acute Lymphoblastic Leukemia, Blasts at Different Stages of Immunophenotypic Maturation Have Stem Cell Properties

Christoph le Viseur; Marc Hotfilder; Simon Bomken; Kerrie Wilson; Silja Röttgers; André Schrauder; Annegret Rosemann; Julie Irving; Ronald W. Stam; Leonard D. Shultz; Jochen Harbott; Heribert Jürgens; Martin Schrappe; Rob Pieters; Josef Vormoor

We examined the leukemic stem cell potential of blasts at different stages of maturation in childhood acute lymphoblastic leukemia (ALL). Human leukemic bone marrow was transplanted intrafemorally into NOD/scid mice. Cells sorted using the B precursor differentiation markers CD19, CD20, and CD34 were isolated from patient samples and engrafted mice before serial transplantation into primary or subsequent (up to quaternary) recipients. Surprisingly, blasts representative of all of the different maturational stages were able to reconstitute and reestablish the complete leukemic phenotype in vivo. Sorted blast populations mirrored normal B precursor cells with transcription of a number of stage-appropriate genes. These observations inform a model for leukemia-propagating stem cells in childhood ALL.


British Journal of Cancer | 2005

The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia

I. Hubeek; Ronald W. Stam; Godefridus J. Peters; R Broekhuizen; J P P Meijerink; E. R. Van Wering; Brenda Gibson; U Creutzig; Christian M. Zwaan; Jacqueline Cloos; D J Kuik; R. Pieters; G. J. L. Kaspers

Cytarabine (ara-C) is the most effective agent for the treatment of acute myeloid leukaemia (AML). Aberrant expression of enzymes involved in the transport/metabolism of ara-C could explain drug resistance. We determined mRNA expression of these factors using quantitative-real-time-PCR in leukemic blasts from children diagnosed with de novo AML. Expression of the inactivating enzyme pyrimidine nucleotidase-I (PN-I) was 1.8-fold lower in FAB-M5 as compared to FAB-M1/2 (P=0.007). In vitro sensitivity to deoxynucleoside analogues was determined using the MTT-assay. Human equilibrative nucleoside transporter-1 (hENT1) mRNA expression and ara-C sensitivity were significantly correlated (rp=−0.46; P=0.001), with three-fold lower hENT1 mRNA levels in resistant patients (P=0.003). hENT1 mRNA expression also seemed to correlate inversely with the LC50 values of cladribine (rp=−0.30; P=0.04), decitabine (rp=−0.29; P=0.04) and gemcitabine (rp=−0.33; P=0.02). Deoxycytidine kinase (dCK) and cytidine deaminase (CDA) mRNA expression seemed to correlate with in vitro sensitivity to gemcitabine (rp=−0.31; P=0.03) and decitabine (rp=0.33; P=0.03), respectively. The dCK/PN-I ratio correlated inversely with LC50 values for gemcitabine (rp=−0.45, P=0.001) and the dCK/CDA ratio seemed to correlate with LC50 values for decitabine (rp=−0.29; 0.04). In conclusion, decreased expression of hENT1, which transports ara-C across the cell membrane, appears to be a major factor in ara-C resistance in childhood AML.


Blood | 2009

Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options

Dominique J. P. M. Stumpel; Pauline Schneider; Eddy van Roon; Judith M. Boer; Paola De Lorenzo; Maria Grazia Valsecchi; Renée X. de Menezes; Rob Pieters; Ronald W. Stam

MLL-rearranged infant acute lymphoblastic leukemia (ALL) remains the most aggressive type of childhood leukemia, displaying a unique gene expression profile. Here we hypothesized that this characteristic gene expression signature may have been established by potentially reversible epigenetic modifications. To test this hypothesis, we used differential methylation hybridization to explore the DNA methylation patterns underlying MLL-rearranged ALL in infants. The obtained results were correlated with gene expression data to confirm gene silencing as a result of promoter hypermethylation. Distinct promoter CpG island methylation patterns separated different genetic subtypes of MLL-rearranged ALL in infants. MLL translocations t(4;11) and t(11;19) characterized extensively hypermethylated leukemias, whereas t(9;11)-positive infant ALL and infant ALL carrying wild-type MLL genes epigenetically resembled normal bone marrow. Furthermore, the degree of promoter hypermethylation among infant ALL patients carrying t(4;11) or t(11;19) appeared to influence relapse-free survival, with patients displaying accentuated methylation being at high relapse risk. Finally, we show that the demethylating agent zebularine reverses aberrant DNA methylation and effectively induces apoptosis in MLL-rearranged ALL cells. Collectively these data suggest that aberrant DNA methylation occurs in the majority of MLL-rearranged infant ALL cases and guides clinical outcome. Therefore, inhibition of aberrant DNA methylation may be an important novel therapeutic strategy for MLL-rearranged ALL in infants.


Blood | 2010

Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants

Ronald W. Stam; Pauline Schneider; Jill A. P. Hagelstein; Marieke H. van der Linden; Dominique J. P. M. Stumpel; Renee X de Menezes; Paola De Lorenzo; Maria Grazia Valsecchi; Rob Pieters

Acute lymphoblastic leukemia (ALL) in infants (< 1 year) is characterized by a poor prognosis and a high incidence of MLL translocations. Several studies demonstrated the unique gene expression profile associated with MLL-rearranged ALL, but generally small cohorts were analyzed as uniform patient groups regardless of the type of MLL translocation, whereas the analysis of translocation-negative infant ALL remained unacknowledged. Here we generated and analyzed primary infant ALL expression profiles (n = 73) typified by translocations t(4;11), t(11;19), and t(9;11), or the absence of MLL translocations. Our data show that MLL germline infant ALL specifies a gene expression pattern that is different from both MLL-rearranged infant ALL and pediatric precursor B-ALL. Moreover, we demonstrate that, apart from a fundamental signature shared by all MLL-rearranged infant ALL samples, each type of MLL translocation is associated with a translocation-specific gene expression signature. Finally, we show the existence of 2 distinct subgroups among t(4;11)-positive infant ALL cases characterized by the absence or presence of HOXA expression, and that patients lacking HOXA expression are at extreme high risk of disease relapse. These gene expression profiles should provide important novel insights in the complex biology of MLL-rearranged infant ALL and boost our progress in finding novel therapeutic solutions.


Haematologica | 2010

Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia

Diana Schotte; Ellen Lange-Turenhout; Dominique J. P. M. Stumpel; Ronald W. Stam; Jessica Buijs-Gladdines; Jules P.P. Meijerink; Rob Pieters; Monique L. den Boer

Background Deregulation of microRNA may contribute to hematopoietic malignancies. MicroRNA-196b (miR-196b) is highly expressed in MLL-rearranged leukemia and has been shown to be activated by MLL and MLL-fusion genes. Design and Methods In order to determine whether high expression of miR-196b is restricted to MLL-rearranged leukemia, we used quantitative stem-loop reverse transcriptase polymerase chain reaction to measure the expression of this microRNA in 72 selected cases of pediatric acute lymphoblastic leukemia i.e. MLL-rearranged and non-MLL-rearranged precursor B-cell and T-cell acute lymphoblastic leukemias. We also determined the expression of HOXA-genes flanking miR-196 by microarray and real-time quantitative polymerase chain reaction. Furthermore, we used CpG island-arrays to explore the DNA methylation status of miR-196b and HOXA. Results We demonstrated that high expression of miR-196b is not unique to MLL-rearranged acute lymphoblastic leukemia but also occurs in patients with T-cell acute lymphoblastic leukemia patients carrying CALM-AF10, SET-NUP214 and inversion of chromosome 7. Like MLL-rearrangements, these abnormalities have been functionally linked with up-regulation of HOXA. In correspondence, miR-196b expression in these patients correlated strongly with the levels of HOXA family genes (Spearman’s correlation coefficient ≥ 0.7; P≤0.005). Since miR-196b is encoded on the HOXA cluster, these data suggest co-activation of miR-196b and HOXA genes in acute lymphoblastic leukemia. Up-regulation of miR-196b coincides with reduced DNA methylation at CpG islands in the promoter regions of miR-196b and the entire HOXA cluster in MLL-rearranged cases compared to in cases of non-MLL precursor B-cell acute lymphoblastic leukemia and normal bone marrow (P<0.05), suggesting an epigenetic origin for miR-196b over-expression. Although patients with MLL-rearranged acute lymphoblastic leukemia are highly resistant to prednisolone and L-asparaginase, this resistance was not attributed to miR-196b expression. Conclusions High expression of miR-196b is not exclusively MLL-driven but can also be found in other types of leukemia with aberrant activation of HOXA genes. Since miR-196b has been shown by others to exert oncogenic activity in bone marrow progenitor cells, the findings of the present study imply a potential role for miR-196b in the underlying biology of all HOXA-activated leukemias.


Blood | 2012

Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study

Huining Kang; Carla S. Wilson; Richard C. Harvey; I-Ming Chen; Maurice H. Murphy; Susan R. Atlas; Edward J. Bedrick; Meenakshi Devidas; Andrew J. Carroll; Blaine W. Robinson; Ronald W. Stam; Maria Grazia Valsecchi; Rob Pieters; Nyla A. Heerema; Joanne M. Hilden; Carolyn A. Felix; Gregory H. Reaman; Bruce M. Camitta; Naomi J. Winick; William L. Carroll; Zoann E. Dreyer; Stephen P. Hunger; Cheryl L. Willman

Gene expression profiling was performed on 97 cases of infant ALL from Childrens Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expression was found in a group of infants with excellent outcome (n = 11; 5-year EFS of 100%), whereas differential expression of IRX2 and TACC2 partitioned the remaining infants into 2 groups with significantly different survivals (5-year EFS of 16% vs 64%; P < .001). When infants with MLL-AFF1 were analyzed separately, a 7-gene classifier was developed that split them into 2 distinct groups with significantly different outcomes (5-year EFS of 20% vs 65%; P < .001). In this classifier, elevated expression of NEGR1 was associated with better EFS, whereas IRX2, EPS8, and TPD52 expression were correlated with worse outcome. This classifier also predicted EFS in an independent infant ALL cohort from the Interfant-99 trial. When evaluating expression profiles as a continuous variable relative to patient age, we further identified striking differences in profiles in infants less than or equal to 90 days of age and those more than 90 days of age. These age-related patterns suggest different mechanisms of leukemogenesis and may underlie the differential outcomes historically seen in these age groups.


European Urology | 2012

Genome-wide Analysis of CpG Island Methylation in Bladder Cancer Identified TBX2, TBX3, GATA2, and ZIC4 as pTa-Specific Prognostic Markers

Raju Kandimalla; Angela A.G. van Tilborg; Lucie C. Kompier; Dominique J.P.M. Stumpel; Ronald W. Stam; Chris H. Bangma; Ellen C. Zwarthoff

BACKGROUND DNA methylation markers could serve as useful biomarkers, both as markers for progression and for urine-based diagnostic assays. OBJECTIVE Identify bladder cancer (BCa)-specific methylated DNA sequences for predicting pTa-specific progression and detecting BCa in voided urine. DESIGN, SETTING, AND PARTICIPANTS Genome-wide methylation analysis was performed on 44 bladder tumours using the Agilent 244K Human CpG Island Microarray (Agilent Technologies, Santa Clara, CA, USA). Validation was done using a custom Illumina 384-plex assay (Illumina, San Diego, CA, USA) in a retrospective group of 77 independent tumours. Markers for progression were identified in pTa (n = 24) tumours and validated retrospectively in an independent series of 41 pTa tumours by the SNaPshot method (Applied Biosystems, Foster City, CA, USA). MEASUREMENTS The percentage of methylation in tumour and urine samples was used to identify markers for detection and related to the end point of progression to muscle-invasive disease with Kaplan-Meier models and multivariate analysis. RESULTS AND LIMITATIONS In the validation set, methylation of the T-box 2 (TBX2), T-box 3 (TBX3), GATA binding protein 2 (GATA2), and Zic family member 4 (ZIC4) genes was associated with progression to muscle-invasive disease in pTa tumours (p = 0.003). Methylation of TBX2 alone showed a sensitivity of 100%, a specificity of 80%, a positive predictive value of 78%, and a negative predictive value of 100%, with an area under the curve of 0.96 (p<0.0001) for predicting progression. Multivariate analysis showed that methylation of TBX3 and GATA2 are independent predictors of progression when compared to clinicopathologic variables (p = 0.04 and p = 0.03, respectively). The predictive accuracy improved by 23% by adding methylation of TBX2, TBX3, and GATA2 to the European Organisation for Research and Treatment of Cancer risk scores. We further identified and validated 110 CpG islands (CGIs) that are differentially methylated between tumour cells and control urine. The limitation of this study is the small number of patients analysed for testing and validating the prognostic markers. CONCLUSIONS We have identified four methylation markers that predict progression in pTa tumours, thereby allowing stratification of patients for personalised follow-up. In addition, we identified CGIs that will enable detection of bladder tumours in voided urine.


Blood | 2010

Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia

Ronald W. Stam; Monique L. den Boer; Pauline Schneider; Jasper de Boer; Jill Hagelstein; Maria Grazia Valsecchi; Paola De Lorenzo; Stephen E. Sallan; Hugh J. M. Brady; Scott A. Armstrong; Rob Pieters

MLL-rearranged acute lymphoblastic leukemia (ALL) represents an unfavorable type of leukemia that often is highly resistant to glucocorticoids such as prednisone and dexamethasone. Because response to prednisone largely determines clinical outcome of pediatric patients with ALL, overcoming resistance to this drug may be an important step toward improving prognosis. Here, we show how gene expression profiling identifies high-level MCL-1 expression to be associated with prednisolone resistance in MLL-rearranged infant ALL, as well as in more favorable types of childhood ALL. To validate this observation, we determined MCL-1 expression with quantitative reverse transcription-polymerase chain reaction in a cohort of MLL-rearranged infant ALL and pediatric noninfant ALL samples and confirmed that high-level MCL-1 expression is associated with prednisolone resistance in vitro. In addition, MCL-1 expression appeared to be significantly higher in MLL-rearranged infant patients who showed a poor response to prednisone in vivo compared with prednisone good responders. Finally, down-regulation of MCL-1 in prednisolone-resistant MLL-rearranged leukemia cells by RNA interference, to some extent, led to prednisolone sensitization. Collectively, our findings suggest a potential role for MCL-1 in glucocorticoid resistance in MLL-rearranged infant ALL, but at the same time strongly imply that high-level MCL-1 expression is not the sole mechanism providing resistance to these drugs.


Leukemia | 2006

Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia.

Ronald W. Stam; M L den Boer; Monique Passier; G E Janka-Schaub; Stephen E. Sallan; Scott A. Armstrong; Rob Pieters

MLL rearranged acute lymphoblastic leukemia (MLL) is an aggressive type of acute lymphoblastic leukemia (ALL), diagnosed predominantly in infants (<1 years of age). Since current chemotherapy fails in >50% of patients with MLL, new therapeutic strategies are desperately needed. For this, understanding the biological features characterizing MLL is necessary. Analysis of gene expression profiles revealed that the expression of the tumor suppressor gene FHIT is reduced in children with MLL rearranged ALL as compared to ALL patients carrying germ line MLL. This finding was confirmed by quantitative real-time PCR. In 100% of the infant MLL cases tested, methylation of the FHIT 5′CpG region was observed, resulting in strongly reduced mRNA and protein expression. In contrast, FHIT methylation in infant and non-infant ALL patients carrying germ line MLL was found in only ∼60% (P⩽0.004). FHIT expression was restored upon exposing leukemic cells to the demethylating agent decitabine, which induced apoptosis. Likewise and more specifically, leukemic cell death was induced by transfecting MLL rearranged leukemic cells with expression vectors encoding wild-type FHIT, confirming tumor suppressor activity of this gene. These observations imply that suppression of FHIT may be required for the development of MLL, and provide new insights into leukemogenesis and therapeutic possibilities for MLL.

Collaboration


Dive into the Ronald W. Stam's collaboration.

Top Co-Authors

Avatar

Rob Pieters

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pauline Schneider

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pauline Schneider

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clara Bueno

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola De Lorenzo

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge