Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald W. Woodard is active.

Publication


Featured researches published by Ronald W. Woodard.


Journal of Biological Chemistry | 2008

Identification and Characterization of Bacterial Cutinase

Sheng Chen; Xing Tong; Ronald W. Woodard; Guocheng Du; Jing Wu; Jian Chen

Cutinase, which exists in both fungi and bacteria, catalyzes the cleavage of the ester bonds of cutin. Fungal cutinases have been extensively studied, however, reports on bacterial cutinases have been limited due to the lack of knowledge concerning the identity of their open reading frames. In the present study, the cutinase from Thermobifida fusca was induced by cutin and purified to homogeneity by following p-nitrophenyl butyrate hydrolyzing activity. Peptide mass fingerprinting analysis of the wild-type enzyme matched two proteins, Tfu_0883 and Tfu_0882, which are 93% identical in sequence. Both proteins were cloned and overexpressed in their mature form. Recombinant Tfu_0883 and Tfu_0882 display very similar enzymatic properties and were confirmed to be cutinases by their capability to hydrolyze the ester bonds of cutin. Comparative characterization of Fusarium solani pisi and T. fusca cutinases indicated that they have similar substrate specificity and catalytic properties except that the T. fusca enzymes are thermally more stable. Homology modeling revealed that T. fusca cutinases adopt an α/β-hydrolase fold that exhibits both similarities and variations from the fungal cutinase structure. A serine hydrolase catalytic mechanism involving a Ser170-His248-Asp216 (Tfu_0883 numbering) catalytic triad was supported by active site-directed inhibition studies and mutational analyses. This is the first report of cutinase encoding genes from bacterial sources.


Journal of Biological Chemistry | 2003

Escherichia coli YrbH is a D-arabinose 5-phosphate isomerase.

Timothy C. Meredith; Ronald W. Woodard

A gene encoding for arabinose 5-phosphate isomerase (API), which catalyzes the interconversion of d-ribulose 5-phosphate (Ru5P) and d-arabinose 5-phosphate (A5P), has been identified from the genome of Escherichia coli K-12. API is the first enzyme in the biosynthesis of 3-deoxy-d-manno-octulosonate (KDO), a sugar moiety located in the lipopolysaccharide layer of most Gram-negative bacteria. The API gene yrbH is located next to the recently identified specific KDO 8-P phosphatase gene, yrbI. The 328-amino acid open reading frame yrbH was cloned, overexpressed, and characterized. The purified recombinant enzyme is a tetramer and is sensitive to inhibition by zinc cations. API has optimal activity at pH 8.4 and catalytic residues with estimated pKa values of 6.55 ± 0.04 and 10.34 ± 0.07. The enzyme is specific for A5P and Ru5P, with apparent Km values of 0.61 ± 0.06 mm for A5P and 0.35 ± 0.08 mm for Ru5P. The apparent kcat in the A5P to Ru5P direction is 157 ± 4 s–1, and in the Ru5P to A5P direction it is 255 ± 16 s–1. The value of Keq (Ru5P/A5P) is 0.50 ± 0.06. Homology searches of the E. coli genome suggest yrbH may be one of multiple genes that encode proteins with API activity.


Journal of Biological Chemistry | 2007

Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli

Timothy C. Meredith; Uwe Mamat; Zbigniew Kaczyński; Buko Lindner; Otto Holst; Ronald W. Woodard

Colanic acid (CA) or M-antigen is an exopolysaccharide produced by many enterobacteria, including the majority of Escherichia coli strains. Unlike other capsular polysaccharides, which have a close association with the bacterial surface, CA forms a loosely associated saccharide mesh that coats the bacteria, often within biofilms. Herein we show that a highly mucoid strain of E. coli K-12 ligates CA repeats to a significant proportion of lipopolysaccharide (LPS) core acceptor molecules, forming the novel LPS glycoform we call MLPS.MLPS biosynthesis is dependent upon (i) CA induction, (ii) LPS core biosynthesis, and (iii) the O-antigen ligase WaaL. Compositional analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy of a purified MLPS sample confirmed the presence of a CA repeat unit identical in carbohydrate sequence, but differing at multiple positions in anomeric configuration and linkage, from published structures of extracellular CA. The attachment point was identified as O-7 of the l-glycero-d-manno-heptose of the outer LPS core, the same position used for O-antigen ligation. When O-antigen biosynthesis was restored in the K-12 background and grown under conditions meeting the above specifications, only MLPS was observed, suggesting E. coli can reversibly change its proximal covalently linked cell surface polysaccharide coat from O-antigen to CA in response to certain environmental stimuli. The identification of MLPS has implications for potential underlying mechanisms coordinating the synthesis of various surface polysaccharides.


Journal of Biological Chemistry | 2006

New Insights into the Evolutionary Links Relating to the 3-Deoxy-D-arabino-heptulosonate 7-Phosphate Synthase Subfamilies

Jing Wu; Ronald W. Woodard

Bacterial 3-deoxy-d-arabino-heptulosonate 7-phosphate synthases (DAHPSs) have been divided into either of two classes (Class I/Class II) or subfamilies (AroAIα/AroAIβ). Our investigation into the biochemical properties of the unique bifunctional DAHPS from Bacillus subtilis provides new insight into the evolutionary link among DAHPS subfamilies. In the present study, the DAHPS (aroA) and chorismate mutase (aroQ) activities of B. subtilis DAHPS are separated by domain truncation. Detailed enzymatic studies with the full-length wild-type protein and the truncated domains led to our hypothesis that the aroQ domain was fused to the N terminus of aroA in B. subtilis during evolution for the purpose of feedback regulation and not for the creation of a bona fide bifunctional enzyme. In addition, examination of aroA and aroQ fusion proteins from Porphyromonas gingivalis, in which the aroQ domain is fused to the C terminus of aroA, further supports the hypothesis. These results, along with sequence structure analysis of the DAHPS families suggest that “feedback regulation” may indeed be the evolutionary link between the two classes/subfamilies. It is likely that DAHPSs evolved from a primitive unregulated member of the AroAIβ subfamily. During evolution, some members of the AroAIβ subfamily remained unregulated, whereas other members acquired an extra domain for feedback regulation. The AroAIα subfamilies, however, evolved in a more complex manner to acquire insertions/extensions in the (β/α)8 barrel to function as regulatory elements.


Journal of Biological Chemistry | 2003

Escherichia coli YrbI Is 3-Deoxy-d-manno-octulosonate 8-Phosphate Phosphatase

Jing Wu; Ronald W. Woodard

3-Deoxy-d-manno-octulosonate 8-phosphate (KDO 8-P) phosphatase, which catalyzes the hydrolysis of KDO 8-P to KDO and inorganic phosphate, is the last enzyme in the KDO biosynthetic pathway for which the gene has not been identified. Wild-type KDO 8-P phosphatase was purified from Escherichia coli B, and the N-terminal amino acid sequence matched a hypothetical protein encoded by the E. coli open reading frame, yrbI. The yrbI gene, which encodes for a protein of 188 amino acids, was cloned, and the gene product was overexpressed in E. coli. The recombinant enzyme is a tetramer and requires a divalent metal cofactor for activity. Optimal enzymatic activity is observed at pH 5.5. The enzyme is highly specific for KDO 8-P with an apparent K m of 75 μm and a k cat of 175 s−1 in the presence of 1 mm Mg2+. Amino acid sequence analysis indicates that KDO 8-P phosphatase is a member of the haloacid dehalogenase hydrolase superfamily.


Microbial Cell Factories | 2015

Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins

Uwe Mamat; Kathleen Wilke; David Bramhill; Andra B. Schromm; Buko Lindner; Thomas A. Kohl; José Luis Corchero; Antonio Villaverde; Lana Schaffer; Steven R. Head; Chad Souvignier; Timothy C. Meredith; Ronald W. Woodard

BackgroundLipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product.ResultsAs an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels.ConclusionsThis paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.


Journal of Bacteriology | 2005

Identification of GutQ from Escherichia coli as a d-Arabinose 5-Phosphate Isomerase

Timothy C. Meredith; Ronald W. Woodard

The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon.


Journal of Molecular Evolution | 2001

Aquifex aeolicus 3-Deoxy-D-manno-2-Octulosonic Acid 8-Phosphate Synthase: A New Class of KDO 8-P Synthase?

Matthew R. Birck; Ronald W. Woodard

Abstract. The relationship between 3-deoxy-d-manno2-octulosonic acid 8-phosphate (KDO 8-P) synthase and 3-deoxy-d-arabino-2-heptulosonic acid 7-phosphate (DAH 7-P) synthase has not been adequately addressed in the literature. Based on recent reports of a metal requiring KDO 8-P synthase and the newly solved X-ray crystal structures of both Escherichia coli KDO 8-P synthase and DAH 7-P synthase, we begin to address the evolutionary kinship between these catalytically similar enzymes. Using a maximum likelihood-based grouping of 29 KDO 8-P synthase sequences, we demonstrate the existence of a new class of KDO 8-P synthase, the members of which we propose to require a metal cofactor for catalysis. Similarly, we hypothesize a class of DAH 7-P synthase that does not have the metal requirement of the heretofore model E. coli enzyme. Based on this information and a careful investigation of the reported X-ray crystal structures, we also propose that KDO 8-P synthase and DAH 7-P synthase are the product of a divergent evolutionary process from a common ancestor.


Journal of Biological Chemistry | 2000

A metal bridge between two enzyme families. 3-deoxy-D-manno-octulosonate-8-phosphate synthase from Aquifex aeolicus requires a divalent metal for activity.

Henry S. Duewel; Ronald W. Woodard

The enzymes 3-deoxy-d-manno-octulosonic acid-8-phosphate synthase (KDO8PS) and 3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthase (DAHPS) catalyze analogous condensation reactions between phosphoenolpyruvate and d-arabinose 5-phosphate ord-erythrose 4-phosphate, respectively. While several similarities exist between the two enzymatic reactions, classic studies on the Escherichia coli enzymes have established that DAHPS is a metalloenzyme, whereas KDO8PS has no metal requirement. Here, we demonstrate that KDO8PS from Aquifex aeolicus, representing only the second member of the KDO8PS family to be characterized in detail, is a metalloenzyme. The recombinant KDO8PS, as isolated, displays an absorption band at 505 nm and contains approximately 0.4 and 0.2–0.3 eq of zinc and iron, respectively, per enzyme subunit. EDTA inactivates the enzyme in a time- and concentration-dependent manner and eliminates the absorption at 505 nm. The addition of Cu2+ to KDO8PS produces an intense absorption at 375 nm, while neither Co2+ nor Ni2+ produce such an effect. The EDTA-treated enzyme is reactivated by a wide range of divalent metal ions including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+, and Zn2+ and is reversibly inhibited by higher concentrations (>1 mm) of certain metals. Analysis of several metal forms of the enzyme by plasma mass spectrometry suggests that the enzyme preferentially binds one, two, or four metal ions per tetramer. These observations strongly suggest that A. aeolicus KDO8PS is a metalloenzyme in vivo and point to a previously unrecognized relationship between the KDO8PS and DAHPS families.


Biochemical Journal | 2004

Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni.

Appavu K. Sundaram; Lee Pitts; Kamilah Muhammad; Jing Wu; Michael J. Betenbaugh; Ronald W. Woodard; Willie F. Vann

Escherichia coli NeuNAc (N-acetylneuraminic acid) synthase catalyses the condensation of PEP (phosphoenolpyruvate) and ManNAc (N-acetylmannosamine) to form NeuNAc and is encoded by the neuB gene. Campylobacter jejuni has three neuB genes, one of which is very similar to the E. coli neuB gene. We have characterized the C. jejuni neuraminic acid synthase with respect to acylamino sugar specificity and stereochemistry of the PEP condensation. We determined the specificity of C. jejuni NeuNAc synthase for N-acetylmannosamine, N-butanoylmannosamine, N-propionoylmannosamine and N-pentanoylmannosamine. We find that, although this enzyme exhibits similar K(m) values for N-acylmannosamine molecules with different N-acyl groups, the kcat/K(m) values decreased with increasing chain length. NeuNAc synthase is a member of a PEP-utilizing family of enzymes that form oxo acids from PEP and a monosaccharide. This family includes KDO 8-P (2-keto-3-deoxy-D-manno-octulosonate 8-phosphate) synthase and DAH 7-P (2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate) synthase. Both enzymes catalyse the condensation of the re face of the aldehyde group of the monosaccharide with the si face of the PEP molecule. The C. jejuni NeuNAc synthase catalysed the condensation of Z- and E-[3-2H]PEP with ManNAc, yielding (3S)-3-deutero-NeuNAc and (3R)-3-deutero-NeuNAc respectively. The condensation of Z-[3-F]PEP and ManNAc yielded (3S)-3-fluoro-NeuNAc. Results of our studies suggest that the C. jejuni NeuNAc synthase, similar to KDO 8-P synthase and DAH 7-P synthase, catalyses the condensation of the si face of PEP with the aldehyde sugar. The present study is the first stereochemical analysis of the reaction catalysed by a bacterial NeuNAc synthase.

Collaboration


Dive into the Ronald W. Woodard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Buko Lindner

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge