Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronaldo C. Araujo is active.

Publication


Featured researches published by Ronaldo C. Araujo.


Neuropharmacology | 2001

Evidence for the participation of kinins in Freund's adjuvant-induced inflammatory and nociceptive responses in kinin B1 and B2 receptor knockout mice.

Juliano Ferreira; Maria M. Campos; João Bosco Pesquero; Ronaldo C. Araujo; Michael Bader; João B. Calixto

Experiments were designed to investigate the role of kinin B(1) and B(2) receptors in Freunds adjuvant (CFA)-induced inflammation and nociception responses by the use of B(1) and B(2) null mutant mice. Intradermal (i.d.) injection of CFA produced time-dependent and marked hyperalgesic responses in both ipsilateral and contralateral paws of wild-type mice. Gene disruption of the kinin B(2) receptor did not interfere with CFA-induced hyperalgesia, but ablation of the gene of the B(1) receptor reduced the hyperalgesia in both ipsilateral (48+/-13%, at 12 h) and contralateral (91+/-22%, at 12 h) paws. Treatment of wild-type mice with the selective B(1) antagonist des-Arg(9)-[Leu(8)]-BK (150 nmol/kg, s.c.) reduced CFA-evoked thermal hyperalgesia, to an extent which was similar to that observed in mice lacking kinin B(1) receptor. I.d. injection of CFA produced a time-related and long-lasting (up to 72 h) increase in paw volume in wild-type mice. A similar effect was observed in B(1) knockout mice. In mice lacking B(2) receptor, the earlier stage of the CFA-induced paw oedema (6 h) was significantly greater compared with the wild-type animals, an effect which was almost completely reversed (76+/-5%) by des-Arg(9)-[Leu(8)]-BK. This data demonstrates that kinin B(1) receptor, but not B(2) receptor, exerts a critical role in controlling the persistent inflammatory hyperalgesia induced by CFA in mice, while B(2) receptor appears to have only a minor role in the amplification of the earlier stage of CFA-induced paw oedema formation. The results of the present study, taken together with those of previous studies, suggest that B(1) receptor antagonists represent a potential target for the development of new drugs to treat persistent inflammatory pain.


The FASEB Journal | 2000

Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene

José-A. Silva; Ronaldo C. Araujo; Ovidiu Baltatu; Suzana M. Oliveira; Carsten Tschöpe; Edwin Fink; Sigrid Hoffmann; Ralph Plehm; Karl X. Chai; Lee Chao; Julie Chao; Detlev Ganten; João Bosco Pesquero; Michael Bader

To evaluate the cardiovascular actions of kinins, we established a transgenic rat line harboring the human tissue kallikrein gene, TGR(hKLK1). Under the control of the zinc‐inducible metallothionein promoter, the transgene was expressed in most tissues including the heart, kidney, lung, and brain, and human kallikrein was detected in the urine of transgenic animals. Transgenic rats had a lower 24‐h mean arterial pressure in comparison with control rats, which was further decreased when their diet was supplemented with zinc. The day/night rhythm of blood pressure was significantly diminished in TGR(hKLK1) animals, whereas the circadian rhythms of heart rate and locomotor activity were unaffected. Induction of cardiac hypertrophy by isoproterenol treatment revealed a marked protective effect of the kallikrein transgene because the cardiac weight of TGR(hKLK1) increased significantly less, and the expression of atrial natriuretic peptide and collagen III as markers for hypertrophy and fibrosis, respectively, were less enhanced. The specific kinin‐B2 receptor antagonist, icatibant, abolished this cardioprotective effect. In conclusion, the kallikrein‐kinin system is an important determinant in the regulation of blood pressure and its circadian rhythmicity. It also exerts antihypertrophic and antifibrotic actions in the heart.


Neuropharmacology | 2002

The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level

Juliano Ferreira; Maria M. Campos; Ronaldo C. Araujo; Michael Bader; João Bosco Pesquero; João B. Calixto

The mechanisms by which kinins induce hyperalgesia in the spinal cord were investigated by using B(1) or B(2) knockout mice in conjunction with kinin selective agonists and antagonists. The i.t. administration of the kinin B(2) receptor agonists, bradykinin (BK) or Tyr(8)-BK produced dose-related thermal hyperalgesia evaluated in the hot-plate test. BK-induced hyperalgesia was abolished by the B(2) receptor antagonist Hoe 140. The i.t. injection of the kinin B(1) receptor agonists, des-Arg(9)-bradykinin (DABK) or des-Arg(10)-kallidin (DAKD) also caused dose-related thermal hyperalgesia. Different from the B(2) agonists, the i.t. injection of DABK or DAKD caused a weak, but prolonged hyperalgesia, an effect that was blocked by the B(1) receptor antagonist des-Arg(9)-[Leu(8)]-bradykinin (DALBK). The i.t. injection of BK caused thermal hyperalgesia in wild-type mice (WT) and in the B(1) receptor knockout mice (B(1)R KO), but not in the B(2) receptor knockout mice (B(2)R KO). Similarly, the i.t. injection of DABK elicited thermal hyperalgesia in WT mice, but not in B(1)R KO mice. However, DABK-induced hyperalgesia was more pronounced in the B(2)R KO mice when compared with the WT mice. The i.t. injection of Hoe 140 or DALBK inhibited the second phase of formalin (F)-induced nociception. Furthermore, i.t. Hoe 140, but not DALBK, also inhibits the first phase of F response. Finally, the i.t. injection of DALBK, but not of Hoe 140, inhibits the long-term thermal hyperalgesia observed in the ipsilateral and in contralateral paws after intraplantar injection with complete Freunds adjuvant. These findings provide evidence that kinins acting at both B(1) and B(2) receptors at the spinal level exert a critical role in controlling the nociceptive processing mechanisms. Therefore, selective kinin antagonists against both receptors are of potential interest drugs to treat some pain states.


Biological Chemistry | 2007

Increase in kinins on post-exercise hypotension in normotensive and hypertensive volunteers.

Milton Rocha Moraes; Reury Frank Pereira Bacurau; João D.S. Ramalho; Felipe C.G. Reis; Dulce Elena Casarini; Jair R. Chagas; Vitor Oliveira; Elisa Mieko Suemitsu Higa; Dulcineia S.P. Abdalla; Jorge L. Pesquero; João Bosco Pesquero; Ronaldo C. Araujo

Abstract Post-exercise hypotension is an important event for blood pressure regulation, especially in hypertensive individuals. Although post-exercise hypotension is a well-known phenomenon, the mechanism responsible is still unclear. The kallikrein-kinin system is involved in blood pressure control, but its role in post-exercise hypotension has not yet been investigated. Thus, the purpose of this study was to investigate the involvement of the vasodilators bradykinin and des-Arg9-BK and kallikrein activity in post-exercise hypotension promoted by 35 min of cycle ergometer (CE) or circuit weight-training (CWT) bouts in normotensive and hypertensive individuals. A significant decrease in mean arterial pressure at 45 and 60 min after CE and 45 min after CWT was observed in normotensive individuals. Hypertensive values of mean arterial pressure were significantly reduced at 45 and 60 min after CE and at 60 min after CWT. Before exercise, plasma bradykinin concentrations and kallikrein activity were higher in hypertensive compared to normotensive volunteers. Kinin levels increased in the groups evaluated at the end of the training period and 60 min post-exercise. These data suggest that the kallikrein-kinin system may be involved in post-exercise hypotension in normotensive and hypertensive individuals subjected to CE and CWT bouts.


The Journal of Neuroscience | 2005

Reduced Nerve Injury-Induced Neuropathic Pain in Kinin B1 Receptor Knock-Out Mice

Juliano Ferreira; Alessandra Beirith; Marcelo A. Mori; Ronaldo C. Araujo; Michael Bader; João Bosco Pesquero; João B. Calixto

Injury to peripheral nerves often results in a persistent neuropathic pain condition that is characterized by spontaneous pain, allodynia, and hyperalgesia. Nerve injury is accompanied by a local inflammatory reaction in which nerve-associated and immune cells release several pronociceptive mediators. Kinin B1 receptors are rarely expressed in nontraumatized tissues, but they can be expressed after tissue injury. Because B1 receptors mediate chronic inflammatory painful processes, we studied their participation in neuropathic pain using receptor gene-deleted mice. In the absence of neuropathy, we found no difference in the paw-withdrawal responses to thermal or mechanical stimulation between B1 receptor knock-out mice and 129/J wild-type mice. Partial ligation of the sciatic nerve in the wild-type mouse produced a profound and long-lasting decrease in thermal and mechanical thresholds in the paw ipsilateral to nerve lesion. Threshold changed neither in the sham-operated animals nor in the paw contralateral to lesion. Ablation of the gene for the B1 receptor resulted in a significant reduction in early stages of mechanical allodynia and thermal hyperalgesia. Furthermore, systemic treatment with the B1 selective receptor antagonist des-Arg9-[Leu8]-bradykinin reduced the established mechanical allodynia observed 7-28 d after nerve lesion in wild-type mice. Partial sciatic nerve ligation induced an upregulation in B1 receptor mRNA in ipsilateral paw, sciatic nerve, and spinal cord of wild-type mice. Together, kinin B1 receptor activation seems to be essential to neuropathic pain development, suggesting that an oral-selective B1 receptor antagonist might have therapeutic potential in the management of chronic pain.


PLOS ONE | 2012

Altered Glucose Homeostasis and Hepatic Function in Obese Mice Deficient for Both Kinin Receptor Genes

Carlos C. Barros; Anderson Sola Haro; F.J. Russo; Ines Schadock; Sandro Soares de Almeida; Rosane A. Ribeiro; Emerielle C. Vanzela; Valéria Pereira Lanzoni; Flavio C. Barros; Milton Rocha Moraes; Marcelo A. Mori; Reury Frank Pereira Bacurau; Martin Würtele; Antonio C. Boschero; Everardo M. Carneiro; Michael Bader; João Bosco Pesquero; Ronaldo C. Araujo

The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.


Biological Chemistry | 2001

Altered neutrophil homeostasis in kinin B1 receptor-deficient mice.

Ronaldo C. Araujo; Ralph Kettritz; Iduna Fichtner; Antonio C. M. Paiva; João Bosco Pesquero; Michael Bader

Abstract The kallikrein-kinin system is activated during inflammation and plays a major role in the inflammatory process. One of the main mechanisms of kinin action includes the modulation of neutrophil function employing both receptors for kinins, B1 and B2. In this report we show by the use of B1 receptor-deficient mice that neutrophil migration in inflamed tissues is dependent on kinin B1 receptors. However, there is no change in circulating leukocyte number and composition after genetic ablation of this receptor. Furthermore, apoptosis of neutrophils necessary for the resolution of persistent inflammatory processes is impaired in mice lacking the B1 receptor. We also show that this receptor is expressed on neutrophils, thus it may be directly involved in the induction of apoptosis in these cells after prolonged activation at inflamed sites. In conclusion, our data show that the kinin B1 receptor modulates migration and the life span of neutrophils at sites of inflammation and may be therefore an important drug target in the therapy of inflammatory diseases.


Obesity | 2010

Treatment of obese adolescents: the influence of periodization models and ACE genotype.

Denis Foschini; Ronaldo C. Araujo; Reury Frank Pereira Bacurau; Aline de Piano; Sandro Soares de Almeida; June Carnier; Thiago Santos Rosa; Marco Túlio de Mello; Sergio Tufik; Ana R. Dâmaso

The aims of the present study were to compare the effects of two periodization models on metabolic syndrome risk factors in obese adolescents and verify whether the angiotensin‐converting enzyme (ACE) genotype is important in establishing these effects. A total of 32 postpuberty obese adolescents were submitted to aerobic training (AT) and resistance training (RT) for 14 weeks. The subjects were divided into linear periodization (LP, n = 16) or daily undulating periodization (DUP, n = 16). Body composition, visceral and subcutaneous fat, glycemia, insulinemia, homeostasis model assessment of insulin resistance (HOMA‐IR), lipid profiles, blood pressure, maximal oxygen consumption (VO2max), resting metabolic rate (RMR), muscular endurance were analyzed at baseline and after intervention. Both groups demonstrated a significant reduction in body mass, BMI, body fat, visceral and subcutaneous fat, total and low‐density lipoprotein cholesterol, blood pressure and an increase in fat‐free mass, VO2max, and muscular endurance. However, only DUP promoted a reduction in insulin concentrations and HOMA‐IR. It is important to emphasize that there was no statics difference between LP and DUP groups; however, it appears that there may be bigger changes in the DUP than LP group in some of the metabolic syndrome risk factors in obese adolescents with regard to the effect size (ES). Both periodization models presented a large effect on muscular endurance. Despite the limitation of sample size, our results suggested that the ACE genotype may influence the functional and metabolic characteristics of obese adolescents and may be considered in the future strategies for massive obesity control.


Diabetes | 2008

Kinin B1 Receptor Deficiency Leads to Leptin Hypersensitivity and Resistance to Obesity

Marcelo A. Mori; Ronaldo C. Araujo; Felipe C.G. Reis; Daniela G. Sgai; Raphael Gomes Fonseca; Carlos C. Barros; Vanessa F. Merino; Mariana Passadore; Ana M.R.B. Barbosa; Bernard Ferrari; Pierre Carayon; Charlles Heldan de Moura Castro; Suma I. Shimuta; Jacqueline Luz; Jean-Loup Bascands; Joost P. Schanstra; Patrick Even; Suzana M. Oliveira; Michael Bader; João Bosco Pesquero

OBJECTIVE—Kinins mediate pathophysiological processes related to hypertension, pain, and inflammation through the activation of two G-protein–coupled receptors, named B1 and B2. Although these peptides have been related to glucose homeostasis, their effects on energy balance are still unknown. RESEARCH DESIGN AND METHODS—Using genetic and pharmacological strategies to abrogate the kinin B1 receptor in different animal models of obesity, here we present evidence of a novel role for kinins in the regulation of satiety and adiposity. RESULTS—Kinin B1 receptor deficiency in mice (B1−/−) resulted in less fat content, hypoleptinemia, increased leptin sensitivity, and robust protection against high-fat diet–induced weight gain. Under high-fat diet, B1−/− also exhibited reduced food intake, improved lipid oxidation, and increased energy expenditure. Surprisingly, B1 receptor deficiency was not able to decrease food intake and adiposity in obese mice lacking leptin (ob/ob-B1−/−). However, ob/ob-B1−/− mice were more responsive to the effects of exogenous leptin on body weight and food intake, suggesting that B1 receptors may be dependent on leptin to display their metabolic roles. Finally, inhibition of weight gain and food intake by B1 receptor ablation was pharmacologically confirmed by long-term administration of the kinin B1 receptor antagonist SSR240612 to mice under high-fat diet. CONCLUSIONS—Our data suggest that kinin B1 receptors participate in the regulation of the energy balance via a mechanism that could involve the modulation of leptin sensitivity.


Journal of Human Hypertension | 2012

Effect of 12 weeks of resistance exercise on post-exercise hypotension in stage 1 hypertensive individuals

Milton Rocha Moraes; Reury Fp Bacurau; H G Simões; C S G Campbell; M A Pudo; Frederick Wasinski; João Bosco Pesquero; Martin Würtele; Ronaldo C. Araujo

Post-exercise hypotension (PEH), the reduction of blood pressure (BP) after a single bout of exercise, is of great clinical relevance. As the magnitude of this phenomenon seems to be dependent on pre-exercise BP values and chronic exercise training in hypertensive individuals leads to BP reduction; PEH could be attenuated in this context. Therefore, the aim of the present study was to investigate whether PEH remains constant after resistance exercise training. Fifteen hypertensive individuals (46±8 years; 88±16 kg; 30±6% body fat; 150±13/93±5 mm Hg systolic/diastolic BP, SBP/DBP) were withdrawn from medication and performed 12 weeks of moderate-intensity resistance training. Parameters of cardiovascular function were evaluated before and after the training period. Before the training program, hypertensive volunteers showed significant PEH. After an acute moderate-intensity resistance exercise session with three sets of 12 repetitions (60% of one repetition maximum) and a total of seven exercises, BP was reduced post-exercise (45–60 min) by an average of aproximately −22 mm Hg for SBP, −8 mm Hg for DBP and −13 mm Hg for mean arterial pressure (P<0.05). However, this acute hypotensive effect did not occur after the 12 weeks of training (P>0.05). In conclusion, our data demonstrate that PEH, following an acute exercise session, can indeed be attenuated after 12 weeks of training in hypertensive stage 1 patients not using antihypertensive medication.

Collaboration


Dive into the Ronaldo C. Araujo's collaboration.

Top Co-Authors

Avatar

João Bosco Pesquero

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Michael Bader

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Sandro Soares de Almeida

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Milton Rocha Moraes

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos C. Barros

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Frederick Wasinski

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Jorge Luiz Pesquero

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge