Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronaldo Mohana-Borges is active.

Publication


Featured researches published by Ronaldo Mohana-Borges.


Journal of Virology | 2012

Dengue Virus Capsid Protein Binding to Hepatic Lipid Droplets (LD) Is Potassium Ion Dependent and Is Mediated by LD Surface Proteins

Filomena A. Carvalho; Fabiana A. Carneiro; Ivo C. Martins; Iranaia Assunção-Miranda; André F. Faustino; Renata M. Pereira; Patricia T. Bozza; Miguel A. R. B. Castanho; Ronaldo Mohana-Borges; Andrea T. Da Poian; N. C. Santos

ABSTRACT Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of −19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na+/K+-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.


Biochemical Journal | 2012

The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif

Ivo C. Martins; Francisco Gomes-Neto; André F. Faustino; Filomena A. Carvalho; Fabiana A. Carneiro; Patricia T. Bozza; Ronaldo Mohana-Borges; Miguel A. R. B. Castanho; Fabio C. L. Almeida; Nuno C. Santos; Andrea T. Da Poian

Dengue is the major arthropod-borne human viral disease, for which no vaccine or specific treatment is available. We used NMR, zeta potential measurements and atomic force microscopy to study the structural features of the interaction between dengue virus C (capsid) protein and LDs (lipid droplets), organelles crucial for infectious particle formation. C protein-binding sites to LD were mapped, revealing a new function for a conserved segment in the N-terminal disordered region and indicating that conformational selection is involved in recognition. The results suggest that the positively charged N-terminal region of C protein prompts the interaction with negatively charged LDs, after which a conformational rearrangement enables the access of the central hydrophobic patch to the LD surface. Taken together, the results allowed the design of a peptide with inhibitory activity of C protein-LD binding, paving the way for new drug development approaches against dengue.


Journal of Biological Chemistry | 2000

Virus Maturation Targets the Protein Capsid to Concerted Disassembly and Unfolding

Andréa C. Oliveira; Andre M. O. Gomes; Fabio C. L. Almeida; Ronaldo Mohana-Borges; Ana Paula Valente; Vijay S. Reddy; John E. Johnson; Jerson L. Silva

Many animal viruses undergo post-assembly proteolytic cleavage that is required for infectivity. The role of maturation cleavage on Flock House virus was evaluated by comparing wild type (wt) and cleavage-defective mutant (D75N) Flock House virus virus-like particles. A concerted dissociation and unfolding of the mature wt particle was observed under treatment by urea, whereas the cleavage-defective mutant dissociated to folded subunits as determined by steady-state and dynamic fluorescence spectroscopy, circular dichroism, and nuclear magnetic resonance. The folded D75N α subunit could reassemble into capsids, whereas the yield of reassembly from unfolded cleaved wt subunits was very low. Overall, our results demonstrate that the maturation/cleavage process targets the particle for an “off pathway” disassembly, because dissociation is coupled to unfolding. The increased motions in the cleaved capsid, revealed by fluorescence and NMR, and the concerted nature of dissociation/unfolding may be crucial to make the mature particle infectious.


PLOS ONE | 2013

Mapping the Interactions of Dengue Virus NS1 Protein with Human Liver Proteins Using a Yeast Two-Hybrid System: Identification of C1q as an Interacting Partner

Emiliana M. Silva; Jonas Nascimento Conde; Diego Allonso; Maurício Lacerda Nogueira; Ronaldo Mohana-Borges

Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV)-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q), which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs), such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection.


Eukaryotic Cell | 2006

Cardiolipin in Hydrogenosomes: Evidence of Symbiotic Origin

Ivone de Andrade Rosa; Marcelo Einicker-Lamas; Róbson Roney Bernardo; Lucia Mendonça Previatto; Ronaldo Mohana-Borges; José Andrés Morgado-Díaz; Marlene Benchimol

ABSTRACT Hydrogenosomes are found in organisms that lack typical mitochondria. Cardiolipin is a phospholipid located exclusively in bacterial membranes and the inner membrane of mitochondria. Here we show, by cell fractionation, thin-layer chromatography, high-pressure liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry that hydrogenosomes of Tritrichomonas foetus, a cattle vaginal parasite, contain cardiolipin, which is strong evidence for its endosymbiotic origin.


Journal of Biological Chemistry | 1999

Protein Folding in the Absence of Chemical Denaturants REVERSIBLE PRESSURE DENATURATION OF THE NONCOVALENT COMPLEX FORMED BY THE ASSOCIATION OF TWO PROTEIN FRAGMENTS

Ronaldo Mohana-Borges; Jerson L. Silva; Gonzalo de Prat-Gay

Small monomeric proteins are the best models for studying protein folding, but they are often too stable for denaturation using pressure as the sole perturbant. In the present work we subject [CI-2(1–40)·(41–64)], a noncovalent complex formed by the association of two complementary fragments of the chymotrypsin inhibitor-2, to high pressure to investigate the folding mechanism of a model protein. Pressures up to 3.5 kilobar do not affect the intact protein, but it can be unfolded reversibly by pressure in the presence of subdenaturing concentrations of guanidine chloride, with free energy and molar volume changes of 2.5 kcal mol−1 and 42.5 ml mol−1, respectively. In contrast, the complex can be reversibly denatured by high pressure without the addition of chemical denaturants. However, the process is clearly independent of the protein concentration, indicating lack of dissociation. We determined a change in the free energy of 1.4 kcal mol−1 and a molar volume change of 35 ml mol−1 for the pressure denaturation of the complex. A persistent quenching of the tryptophan adds further evidence for the presence of residual structure in the high pressure-denatured state. This state also appears to be compact as the small volume change indicates, compared with pressure denaturation of naturally occurring dimers. Based on observations of a number of pressure-denatured states and on characteristics of large CI-2 fragments with a solvent accessible core but maintaining tertiary interactions, the structure of the pressure-denatured state of the CI-2 complex could be explained by an ordered molten globule-like conformation.


Journal of Virology | 2015

Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity.

Diego Allonso; Iamara da Silva Andrade; Jonas Nascimento Conde; Diego Rodrigues Coelho; Daniele C. P. Rocha; Manuela L. da Silva; Gustavo T. Ventura; Emiliana M. Silva; Ronaldo Mohana-Borges

ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux.


Molecular Membrane Biology | 2008

Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering

Fausto Stauffer; Manuel N. Melo; Fabiana A. Carneiro; Francisco J.R. Sousa; Maria A. Juliano; Luiz Juliano; Ronaldo Mohana-Borges; Andrea T. Da Poian; Miguel A. R. B. Castanho

Dengue fever is one of the most widespread tropical diseases in the world. The disease is caused by a virus member of the Flaviviridae family, a group of enveloped positive sense single-stranded RNA viruses. Dengue virus infection is mediated by virus glycoprotein E, which binds to the cell surface. After uptake by endocytosis, this protein induces the fusion between viral envelope and endosomal membrane at the acidic environment of the endosomal compartment. In this work, we evaluated by steady-state and time-resolved fluorescence spectroscopy the interaction between the peptide believed to be the dengue virus fusion peptide and large unilamellar vesicles, studying the extent of partition, fusion capacity and depth of insertion in membranes. The roles of the bilayer composition (neutral and anionic phospholipids), ionic strength and pH of the medium were also studied. Our results indicate that dengue virus fusion peptide has a high affinity to vesicles composed of anionic lipids and that the interaction is mainly electrostatic. Both partition coefficient and fusion index are enhanced by negatively charged phospholipids. The location determined by differential fluorescence quenching using lipophilic probes demonstrated that the peptide is in an intermediate depth in the hemilayers, in-between the bilayer core and its surface. Ultimately, these data provide novel insights on the interaction between dengue virus fusion peptide and its target membranes, namely, the role of oligomerization and specific types of membranes.


PLOS ONE | 2013

Role of the acidic tail of high mobility group protein B1 (HMGB1) in protein stability and DNA bending.

Fabricio S. Belgrano; Isabel Caetano de Abreu da Silva; Francisco M. Bastos de Oliveira; Marcelo Rosado Fantappié; Ronaldo Mohana-Borges

High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling.


PLOS ONE | 2011

Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines

S. M. L. C. Costa; Anna Paula Yorio; Antônio J. S. Gonçalves; Mariana M. Vidale; Emmerson C. B. da Costa; Ronaldo Mohana-Borges; Márcia Archer da Motta; Marcos da Silva Freire; Ada M. B. Alves

The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

Collaboration


Dive into the Ronaldo Mohana-Borges's collaboration.

Top Co-Authors

Avatar

Diego Allonso

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Andrea T. Da Poian

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Emiliana M. Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Jerson L. Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Miguel A. R. B. Castanho

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Fabiana A. Carneiro

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Emmerson C. B. da Costa

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Fabio C. L. Almeida

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

André F. Faustino

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Filomena A. Carvalho

Instituto de Medicina Molecular

View shared research outputs
Researchain Logo
Decentralizing Knowledge