Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronan Collobert is active.

Publication


Featured researches published by Ronan Collobert.


international conference on machine learning | 2008

A unified architecture for natural language processing: deep neural networks with multitask learning

Ronan Collobert; Jason Weston

We describe a single convolutional neural network architecture that, given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense (grammatically and semantically) using a language model. The entire network is trained jointly on all these tasks using weight-sharing, an instance of multitask learning. All the tasks use labeled data except the language model which is learnt from unlabeled text and represents a novel form of semi-supervised learning for the shared tasks. We show how both multitask learning and semi-supervised learning improve the generalization of the shared tasks, resulting in state-of-the-art-performance.


international conference on machine learning | 2009

Curriculum learning

Yoshua Bengio; Jérôme Louradour; Ronan Collobert; Jason Weston

Humans and animals learn much better when the examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and gradually more complex ones. Here, we formalize such training strategies in the context of machine learning, and call them curriculum learning. In the context of recent research studying the difficulty of training in the presence of non-convex training criteria (for deep deterministic and stochastic neural networks), we explore curriculum learning in various set-ups. The experiments show that significant improvements in generalization can be achieved. We hypothesize that curriculum learning has both an effect on the speed of convergence of the training process to a minimum and, in the case of non-convex criteria, on the quality of the local minima obtained: curriculum learning can be seen as a particular form of continuation method (a general strategy for global optimization of non-convex functions).


international conference on machine learning | 2006

Trading convexity for scalability

Ronan Collobert; Fabian H. Sinz; Jason Weston; Léon Bottou

Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how non-convexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.


international conference on machine learning | 2008

Deep learning via semi-supervised embedding

Jason Weston; Frédéric Ratle; Ronan Collobert

We show how nonlinear embedding algorithms popular for use with shallow semi-supervised learning techniques such as kernel methods can be applied to deep multilayer architectures, either as a regularizer at the output layer, or on each layer of the architecture. This provides a simple alternative to existing approaches to deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques.


international conference on machine learning | 2009

Deep learning from temporal coherence in video

Hossein Mobahi; Ronan Collobert; Jason Weston

This work proposes a learning method for deep architectures that takes advantage of sequential data, in particular from the temporal coherence that naturally exists in unlabeled video recordings. That is, two successive frames are likely to contain the same object or objects. This coherence is used as a supervisory signal over the unlabeled data, and is used to improve the performance on a supervised task of interest. We demonstrate the effectiveness of this method on some pose invariant object and face recognition tasks.


international conference on machine learning | 2006

Inference with the Universum

Jason Weston; Ronan Collobert; Fabian H. Sinz; Léon Bottou; Vladimir Vapnik

In this paper we study a new framework introduced by Vapnik (1998) and Vapnik (2006) that is an alternative capacity concept to the large margin approach. In the particular case of binary classification, we are given a set of labeled examples, and a collection of non-examples that do not belong to either class of interest. This collection, called the Universum, allows one to encode prior knowledge by representing meaningful concepts in the same domain as the problem at hand. We describe an algorithm to leverage the Universum by maximizing the number of observed contradictions, and show experimentally that this approach delivers accuracy improvements over using labeled data alone.


Information Retrieval | 2010

Learning to rank with (a lot of) word features

Bing Bai; Jason Weston; David Grangier; Ronan Collobert; Kunihiko Sadamasa; Yanjun Qi; Olivier Chapelle; Kilian Q. Weinberger

In this article we present Supervised Semantic Indexing which defines a class of nonlinear (quadratic) models that are discriminatively trained to directly map from the word content in a query-document or document-document pair to a ranking score. Like Latent Semantic Indexing (LSI), our models take account of correlations between words (synonymy, polysemy). However, unlike LSI our models are trained from a supervised signal directly on the ranking task of interest, which we argue is the reason for our superior results. As the query and target texts are modeled separately, our approach is easily generalized to different retrieval tasks, such as cross-language retrieval or online advertising placement. Dealing with models on all pairs of words features is computationally challenging. We propose several improvements to our basic model for addressing this issue, including low rank (but diagonal preserving) representations, correlated feature hashing and sparsification. We provide an empirical study of all these methods on retrieval tasks based on Wikipedia documents as well as an Internet advertisement task. We obtain state-of-the-art performance while providing realistically scalable methods.


conference on information and knowledge management | 2009

Supervised semantic indexing

Bing Bai; Jason Weston; David Grangier; Ronan Collobert; Kunihiko Sadamasa; Yanjun Qi; Olivier Chapelle; Kilian Q. Weinberger

In this article we propose Supervised Semantic Indexing (SSI), an algorithm that is trained on (query, document) pairs of text documents to predict the quality of their match. Like Latent Semantic Indexing (LSI), our models take account of correlations between words (synonymy, polysemy). However, unlike LSI our models are trained with a supervised signal directly on the ranking task of interest, which we argue is the reason for our superior results. As the query and target texts are modeled separately, our approach is easily generalized to different retrieval tasks, such as online advertising placement. Dealing with models on all pairs of words features is computationally challenging. We propose several improvements to our basic model for addressing this issue, including low rank (but diagonal preserving) representations, and correlated feature hashing (CFH). We provide an empirical study of all these methods on retrieval tasks based on Wikipedia documents as well as an Internet advertisement task. We obtain state-of-the-art performance while providing realistically scalable methods.


international conference on machine learning | 2008

Large scale manifold transduction

Michael Karlen; Jason Weston; Ayse Erkan; Ronan Collobert

We show how the regularizer of Transductive Support Vector Machines (TSVM) can be trained by stochastic gradient descent for linear models and multi-layer architectures. The resulting methods can be trained online, have vastly superior training and testing speed to existing TSVM algorithms, can encode prior knowledge in the network architecture, and obtain competitive error rates. We then go on to propose a natural generalization of the TSVM loss function that takes into account neighborhood and manifold information directly, unifying the two-stage Low Density Separation method into a single criterion, and leading to state-of-the-art results.


PLOS ONE | 2009

Large scale application of neural network based semantic role labeling for automated relation extraction from biomedical texts.

Thorsten Barnickel; Jason Weston; Ronan Collobert; Hans-Werner Mewes; Volker Stümpflen

To reduce the increasing amount of time spent on literature search in the life sciences, several methods for automated knowledge extraction have been developed. Co-occurrence based approaches can deal with large text corpora like MEDLINE in an acceptable time but are not able to extract any specific type of semantic relation. Semantic relation extraction methods based on syntax trees, on the other hand, are computationally expensive and the interpretation of the generated trees is difficult. Several natural language processing (NLP) approaches for the biomedical domain exist focusing specifically on the detection of a limited set of relation types. For systems biology, generic approaches for the detection of a multitude of relation types which in addition are able to process large text corpora are needed but the number of systems meeting both requirements is very limited. We introduce the use of SENNA (“Semantic Extraction using a Neural Network Architecture”), a fast and accurate neural network based Semantic Role Labeling (SRL) program, for the large scale extraction of semantic relations from the biomedical literature. A comparison of processing times of SENNA and other SRL systems or syntactical parsers used in the biomedical domain revealed that SENNA is the fastest Proposition Bank (PropBank) conforming SRL program currently available. 89 million biomedical sentences were tagged with SENNA on a 100 node cluster within three days. The accuracy of the presented relation extraction approach was evaluated on two test sets of annotated sentences resulting in precision/recall values of 0.71/0.43. We show that the accuracy as well as processing speed of the proposed semantic relation extraction approach is sufficient for its large scale application on biomedical text. The proposed approach is highly generalizable regarding the supported relation types and appears to be especially suited for general-purpose, broad-scale text mining systems. The presented approach bridges the gap between fast, cooccurrence-based approaches lacking semantic relations and highly specialized and computationally demanding NLP approaches.

Collaboration


Dive into the Ronan Collobert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Bai

Princeton University

View shared research outputs
Top Co-Authors

Avatar

Yanjun Qi

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

David Grangier

Idiap Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge