Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rong Hou is active.

Publication


Featured researches published by Rong Hou.


Mbio | 2015

The Bamboo-Eating Giant Panda Harbors a Carnivore-Like Gut Microbiota, with Excessive Seasonal Variations

Zhengsheng Xue; Wenping Zhang; Linghua Wang; Rong Hou; Menghui Zhang; Lisong Fei; Xiaojun Zhang; He Huang; Laura C. Bridgewater; Yi Jiang; Chenglin Jiang; Liping Zhao; Xiaoyan Pang; Zhihe Zhang

ABSTRACT The giant panda evolved from omnivorous bears. It lives on a bamboo-dominated diet at present, but it still retains a typical carnivorous digestive system and is genetically deficient in cellulose-digesting enzymes. To find out whether this endangered mammalian species, like other herbivores, has successfully developed a gut microbiota adapted to its fiber-rich diet, we conducted a 16S rRNA gene-based large-scale structural profiling of the giant panda fecal microbiota. Forty-five captive individuals were sampled in spring, summer, and late autumn within 1 year. Significant intraindividual variations in the diversity and structure of gut microbiota across seasons were observed in this population, which were even greater than the variations between individuals. Compared with published data sets involving 124 gut microbiota profiles from 54 mammalian species, these giant pandas, together with 9 captive and 7 wild individuals investigated previously, showed extremely low gut microbiota diversity and an overall structure that diverged from those of nonpanda herbivores but converged with those of carnivorous and omnivorous bears. The giant panda did not harbor putative cellulose-degrading phylotypes such as Ruminococcaceae and Bacteroides bacteria that are typically enriched in other herbivores, but instead, its microbiota was dominated by Escherichia/Shigella and Streptococcus bacteria. Members of the class Clostridia were common and abundant in the giant panda gut microbiota, but most of the members present were absent in other herbivores and were not phylogenetically related with known cellulolytic lineages. Therefore, the giant panda appears not to have evolved a gut microbiota compatible with its newly adopted diet, which may adversely influence the coevolutionary fitness of this herbivore. IMPORTANCE The giant panda, an endangered mammalian species endemic to western China, is well known for its unique bamboo diet. Unlike other herbivores that have successfully evolved anatomically specialized digestive systems to efficiently deconstruct fibrous plant matter, the giant panda still retains a gastrointestinal tract typical of carnivores. We characterized the fecal bacterial communities from a giant panda population to determine whether this animal relies on its symbiotic gut microbiota to cope with the complex carbohydrates that dominate its diet, as is common in other herbivores. We found that the giant panda gut microbiota is low in diversity and highly variable across seasons. It also shows an overall composition typical of bears and entirely differentiated from other herbivores, with low levels of putative cellulose-digesting bacteria. The gut microbiota of this herbivore, therefore, may not have well adapted to its highly fibrous diet, suggesting a potential link with its poor digestive efficiency. The giant panda, an endangered mammalian species endemic to western China, is well known for its unique bamboo diet. Unlike other herbivores that have successfully evolved anatomically specialized digestive systems to efficiently deconstruct fibrous plant matter, the giant panda still retains a gastrointestinal tract typical of carnivores. We characterized the fecal bacterial communities from a giant panda population to determine whether this animal relies on its symbiotic gut microbiota to cope with the complex carbohydrates that dominate its diet, as is common in other herbivores. We found that the giant panda gut microbiota is low in diversity and highly variable across seasons. It also shows an overall composition typical of bears and entirely differentiated from other herbivores, with low levels of putative cellulose-digesting bacteria. The gut microbiota of this herbivore, therefore, may not have well adapted to its highly fibrous diet, suggesting a potential link with its poor digestive efficiency.


PLOS Genetics | 2014

Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau.

Wenping Zhang; Zhenxin Fan; Eunjung Han; Rong Hou; L. Zhang; Marco Galaverni; Jie Huang; Hong Liu; Pedro Silva; Peng Li; John P. Pollinger; Lianming Du; XiuyYue Zhang; Bisong Yue; Robert K. Wayne; Zhihe Zhang

The Tibetan grey wolf (Canis lupus chanco) occupies habitats on the Qinghai-Tibet Plateau, a high altitude (>3000 m) environment where low oxygen tension exerts unique selection pressure on individuals to adapt to hypoxic conditions. To identify genes involved in hypoxia adaptation, we generated complete genome sequences of nine Chinese wolves from high and low altitude populations at an average coverage of 25× coverage. We found that, beginning about 55,000 years ago, the highland Tibetan grey wolf suffered a more substantial population decline than lowland wolves. Positively selected hypoxia-related genes in highland wolves are enriched in the HIF signaling pathway (P = 1.57E-6), ATP binding (P = 5.62E-5), and response to an oxygen-containing compound (P≤5.30E-4). Of these positively selected hypoxia-related genes, three genes (EPAS1, ANGPT1, and RYR2) had at least one specific fixed non-synonymous SNP in highland wolves based on the nine genome data. Our re-sequencing studies on a large panel of individuals showed a frequency difference greater than 58% between highland and lowland wolves for these specific fixed non-synonymous SNPs and a high degree of LD surrounding the three genes, which imply strong selection. Past studies have shown that EPAS1 and ANGPT1 are important in the response to hypoxic stress, and RYR2 is involved in heart function. These three genes also exhibited significant signals of natural selection in high altitude human populations, which suggest similar evolutionary constraints on natural selection in wolves and humans of the Qinghai-Tibet Plateau.


Molecular Ecology | 2009

Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population

Fujun Shen; Zhihe Zhang; Wei He; Bisong Yue; Zhang Aj; L. Zhang; Rong Hou; Chengdong Wang; Toshi Watanabe

Recent success in breeding giant pandas in captivity has encouraged panda conservationists to believe that the ex situ population is ready to serve as a source for supporting the wild population. In this study, we used 11 microsatellite DNA markers to assess the amount and distribution of genetic variability present in the two largest captive populations (Chengdu Research Base of Giant Panda Breeding, Sichuan Province and the China Research and Conservation Center for the Giant Panda at Wolong, Sichuan Province). The data were compared with those samples from wild pandas living in two key giant panda nature reserves (Baoxing Nature Reserve and Wanglang Nature Reserve). The results show that the captive populations have retained lower levels of allelic diversity and heterozygosity compared to isolated wild populations. However, low inbreeding coefficients indicate that captive populations are under careful genetic management. Excessive heterozygosity suggests that the two captive populations have experienced a genetic bottleneck, presumably caused by founder effects. Moreover, evidence of increased genetic divergence demonstrates restricted breeding options within facilities. Based on these results, we conclude that the genetic diversity in the captive populations is not optimal. Introduction of genetic materials from wild pandas and improved exchange of genetic materials among institutions will be necessary for the captive pandas to be representative of the wild populations.


Veterinary Research | 2013

Identification of Dirofilaria immitis miRNA using illumina deep sequencing

Yan Fu; Jingchao Lan; Xuhang Wu; Deying Yang; Zhihe Zhang; Huaming Nie; Rong Hou; Runhui Zhang; Wanpeng Zheng; Yue Xie; Ning Yan; Zhi Yang; Chengdong Wang; Li Luo; Li Liu; Xiaobin Gu; Shuxian Wang; Xuerong Peng; Guangyou Yang

The heartworm Dirofilaria immitis is the causative agent of cardiopulmonary dirofilariosis in dogs and cats, which also infects a wide range of wild mammals and humans. The complex life cycle of D. immitis with several developmental stages in its invertebrate mosquito vectors and its vertebrate hosts indicates the importance of miRNA in growth and development, and their ability to regulate infection of mammalian hosts. This study identified the miRNA profiles of D. immitis of zoonotic significance by deep sequencing. A total of 1063 conserved miRNA candidates, including 68 anti-sense miRNA (miRNA*) sequences, were predicted by computational methods and could be grouped into 808 miRNA families. A significant bias towards family members, family abundance and sequence nucleotides was observed. Thirteen novel miRNA candidates were predicted by alignment with the Brugia malayi genome. Eleven out of 13 predicted miRNA candidates were verified by using a PCR-based method. Target genes of the novel miRNA candidates were predicted by using the heartworm transcriptome dataset. To our knowledge, this is the first report of miRNA profiles in D. immitis, which will contribute to a better understanding of the complex biology of this zoonotic filarial nematode and the molecular regulation roles of miRNA involved. Our findings may also become a useful resource for small RNA studies in other filarial parasitic nematodes.


Journal of Genetics | 2006

Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris)

Wenping Zhang; Zhihe Zhang; Fujun Shen; Rong Hou; Xiaoping Lv; Bisong Yue

Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) ofPanthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8–17 million years ago in the tiger and 4.6–16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular ‘fossils’ that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.


Conservation Genetics | 2008

PCR-CTPP: a rapid and reliable genotyping technique based on ZFX/ZFY alleles for sex identification of tiger (Panthera tigris) and four other endangered felids

Kun Wei; Zhihe Zhang; Wenping Zhang; Xiao Xu; Xu Liang; Guangxin He; Fujun Shen; L. Zhang; Rong Hou; Bisong Yue

An inexpensive, time-saving and reliable method, polymerase chain reaction with confronting two-pair primers (PCR-CTPP), was developed for sex identification in tiger (Panthera tigris) based on zinc finger alleles (ZFX/ZFY). A site of “C/G” transversion representing fixed differences that discriminated between ZFX and ZFY exons among felids was identified for primers designing. This primer set was successfully tested on samples including blood, shed hairs, dried skin, and stool which contained potential contamination caused by prey DNA. Cross species tests shown that this primer set was also useful for sex identification in four other endangered felids.


Archive | 2006

Giant Pandas: Role and efficiency of artificial insemination and genome resource banking

JoGayle Howard; Yan Huang; Pengyan Wang; Desheng Li; Guiquan Zhang; Rong Hou; Zhihe Zhang; Barbara Durrant; Rebecca Spindler; Hemin Zhang; Anju Zhang; David E. Wildt

INTRODUCTION Historically, the breeding of giant pandas in ex situ programmes has been difficult due to behavioural incompatibility and interanimal aggression. Because some individuals fail to mate naturally, the potential loss of valuable genes is a major concern to effective genetic management (see Chapter 21). Consistently successful artificial insemination (AI) would allow incorporating genetically valuable males with behavioural or physical anomalies into the gene pool. This strategy becomes even more powerful when used in the context of a genome resource bank (GRB), an organised repository of cryopreserved biomaterials (tissue, blood, DNA and sperm) (see Chapter 7). The use of sperm cryopreservation and AI allows the movement of genes among zoos and breeding centres without needing to transfer animals, which is both stressful and costly. ‘Assisted breeding’ refers to the tools and techniques associated with helping a pair of animals propagate, from AI to embryo transfer to cloning, among others (Howard, 1999; Pukazhenthi & Wildt, 2004). With the exception of AI, there is not much need for most other assisted-breeding techniques for the giant panda. As will be demonstrated here, AI is quite adequate for dealing with most cases of infertility or with helping to maintain adequate gene diversity in the captive population. In fact, the major breeding facilities, especially the China Conservation and Research Centre for the Giant Panda (hereafter referred to as the Wolong Breeding Centre) and the Chengdu Research Base of Giant Panda Breeding, routinely use AI to increase pregnancy success.


PLOS ONE | 2012

Determination of Baylisascaris schroederi Infection in Wild Giant Pandas by an Accurate and Sensitive PCR/CE-SSCP Method

Wenping Zhang; Shangmian Yie; Bisong Yue; Jielong Zhou; Renxiong An; Jiangdong Yang; Wangli Chen; Chengdong Wang; L. Zhang; Fujun Shen; Guangyou Yang; Rong Hou; Zhihe Zhang

It has been recognized that other than habitat loss, degradation and fragmentation, the infection of the roundworm Baylisascaris schroederi (B. schroederi) is one of the major causes of death in wild giant pandas. However, the prevalence and intensity of the parasite infection has been inconsistently reported through a method that uses sedimentation-floatation followed by a microscope examination. This method fails to accurately determine infection because there are many bamboo residues and/or few B. schroederi eggs in the examined fecal samples. In the present study, we adopted a method that uses PCR and capillary electrophoresis combined with a single-strand conformation polymorphism analysis (PCR/CE-SSCP) to detect B. schroederi infection in wild giant pandas at a nature reserve, and compared it to the traditional microscope approach. The PCR specifically amplified a single band of 279-bp from both fecal samples and positive controls, which was confirmed by sequence analysis to correspond to the mitochondrial COII gene of B. schroederi. Moreover, it was demonstrated that the amount of genomic DNA was linearly correlated with the peak area of the CE-SSCP analysis. Thus, our adopted method can reliably detect the infectious prevalence and intensity of B. schroederi in wild giant pandas. The prevalence of B. schroederi was found to be 54% in the 91 fecal samples examined, and 48% in the fecal samples of 31 identified individual giant pandas. Infectious intensities of the 91 fecal samples were detected to range from 2.8 to 959.2 units/gram, and from 4.8 to 959.2 units/gram in the fecal samples of the 31 identified giant pandas. For comparison, by using the traditional microscope method, the prevalence of B. schroederi was found to be only 33% in the 91 fecal samples, 32% in the fecal samples of the 31 identified giant pandas, and no reliable infectious intensity was observed.


Biology of Reproduction | 2012

Protracted Reproductive Seasonality in the Male Giant Panda (Ailuropoda melanoleuca) Reflected by Patterns in Androgen Profiles, Ejaculate Characteristics, and Selected Behaviors

Copper Aitken-Palmer; Rong Hou; Caitlin Burrell; Zhihe Zhang; Chengdong Wang; Rebecca Spindler; David E. Wildt; Mary Ann Ottinger; JoGayle Howard

ABSTRACT The female giant panda (Ailuropoda melanoleuca) experiences a brief (24–72 h) seasonal estrus, occurring once annually in spring (February–May). Our aim was to determine the existence and temporal profile of reproductive seasonality in the male of this species. The study was facilitated by 3 yr of access to eight giant panda males living in a large breeding center in China. Seasonal periods for the male were defined on the basis of female reproductive activity as prebreeding, breeding (early, peak, late), and nonbreeding seasons. Testes size, fecal androgen excretion, ejaculated sperm density, and frequency of reproductive behaviors (i.e., locomotion, scent marking, vocalizations) increased (P < 0.05) from the prebreeding period (October 1–January 31) to the early breeding season (February 1–March 21). Testes volume and sperm concentration were maximal from March 22 through April 15, a period coinciding with maximal female breeding activity. The occurrence of male reproductive behaviors and fecal androgen concentrations began declining during peak breeding and continued from April 16 through May 31 (late breeding period), returning to nadir throughout the nonbreeding interval (June 1–September 30). Reproductive quiescence throughout the latter period was associated with basal testes size/volume and aspermic ejaculates. Our results reveal that testes morphometry, fecal androgen excretion, seminal quality, and certain behaviors integrated together clearly demonstrate reproductive seasonality in the male giant panda. The coordinated increases in testes size, androgen production, sperm density, and sexual behaviors occur over a protracted interval, likely to prepare for and then accommodate a brief, unpredictable female estrus.


Molecular Ecology Resources | 2015

First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome: a resource for novel gene loci and immunogenetics

Lianming Du; Wujiao Li; Zhenxin Fan; Fujun Shen; Mingyu Yang; Zili Wang; Zuoyi Jian; Rong Hou; Bisong Yue; Xiuyue Zhang

The giant panda (Ailuropoda melanoleuca) is one of the most famous flagship species for conservation, and its draft genome has recently been assembled. However, the transcriptome is not yet available. In this study, the blood transcriptomes of three pandas were characterized and about 160 million sequencing reads were generated using Illumina HiSeq 2000 paired‐end sequencing technology. The assembly yielded 92 598 transcripts with an average length of 1626 bp and N50 length of 2842 bp. Based on a sequence similarity search against nonredundant (nr) protein database, a total of 38 522 (41.6%) transcripts were annotated. Of these annotated transcripts, 25 142 and 8272 transcripts were assigned to gene ontology terms and clusters of orthologous group, respectively. A search against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 9098 (9.83%) transcripts mapped to 324 KEGG pathways, and the best represented functional categories of pathways were signal transduction and immune system. We have also identified 23 460 microsatellites, 43 560 SNPs as well as 21 456 alternative splicing events in the assembly. Additionally, a total of 24 341 complete open reading frames (ORFs) were detected from the assembly where 1492 ORFs were found to be novel gene loci as these have not been annotated so far in any public database.

Collaboration


Dive into the Rong Hou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Zhang

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Dunwu Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangyou Yang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Wildt

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge